40 research outputs found

    Methane emissions from industrial activities using drones

    Get PDF
    Innovative drone-based methods have been developed to map and quantify methane leakages from various industrial activities, such as refineries, Liquified Natural Gas (LNG) terminals, landfills, and water treatment facilities. These methods use a high-speed, high-sensitivity laser sensor and were validated through controlled gas releases. They were also compared to a ground-based infrared absorption-based technique. This initiative is supported by the Swedish Governmental Agency for Innovation Systems (Vinnova) and aligns with UN Sustainable Development Goals 9, 11, and 13. The goal is to reduce methane emissions significantly, aiding Sweden in achieving net-zero greenhouse gas emissions by 2045. Accurate measurements enable effective, targeted, and trackable measures to minimize emissions, resulting in a rapid positive climate impact. The project has led to the development of two distinct drone-based methods: the wall approach and the tracer approach. The wall approach measures gas concentrations across the entire cross-section of the plume, whereas the tracer approach measures the ratio of leaking gas to source gas. Depending on the source\u27s size, one approach may be preferred over the other, with the tracer method being more suitable for point sources and the wall approach for larger sources. The custom-designed drone in this project, provided and operated by Gerdes Solution. is equipped with a high-sensitivity laser sensor and has a flight duration of about 12 minutes while carrying a 3 kg payload. This limitation presents a challenge when conducting wall measurements, which require approximately 25 minutes of flight time for the studied sources. Due to the drone\u27s limited flight time, it necessitates landing and battery replacement, which complicates the process and limits the number of repeat measurements. In future endeavors, employing a drone with a longer flight duration would be advantageous. In total, the study detected about 220 kg/h of methane emissions and 3 kg/h of nitrous oxide emissions, equivalent to an emission rate of about 7 tons/h of carbon dioxide. The emissions were dominated by the water treatment plant and landfills, with relatively little coming from the refinery and LNG plant. However, the wall measurements in thus study serve as demonstrations of how the technique can be used and do not provide a comprehensive picture of the actual emissions from the individual sites; this would require more statistical data in terms of repeat measurements and measurement days. It is shown that drone measurements using the new high sensitivity laser is a valuable tool for mapping methane concentrations from various types of industrial sources, which are challenging to investigate today due to diffuse emissions, large dimensions, and complex geometries. The validation studies show that both the wall approach and controlled tracer releases can be used to quantify emissions, achieving an accuracy of up to 10 % for a simple, single, source. However, in the real measurement situation, the wall approach may be difficult to execute due to practical challenges like flying restrictions and the need for spatially dense data that can be interpolated to a homogenous grid and repeated measurements. In several cases, when the drone had to fly relatively close to the plumes, downwind of large buildings in complex and turbulent wind fields, the wall approach yielded large variability in the resulting flux. It is hence evident that the wall approach requires a thorough understanding of the measurement situation, and that repeated measurements are needed, at different distances from the source and in varying wind directions. The tracer approach was therefore preferred choice for obtaining emission rates in this study, although it is challenging to carry out representative tracer releases for larger sources and for cases when the measurements are performed near to the source, and in this case the wall approach is preferred. It was also shown that the drone-based tracer approach is advantageous to the ground based since it is then easier to capture the full plume

    Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80 degrees N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80A degrees N, 86A degrees W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2%. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5%. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80A degrees N. Satellite 14-52 km ozone and 17-40 km NO2 partial columns within 500 km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0 +/- 0.2% and -0.2 +/- 0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14-52 km satellite and 0-14 km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1-7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25-52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007-2009 spring-time mean relative difference improved from -5.0 +/- 0.4% to -3.1 +/- 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a +/- 1A degrees latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well

    Satellite Limb-Scatter Observations of Stratospheric NO2 and O3 -Retrievals, Validation and Applications

    No full text
    Global observations of vertically resolved atmospheric constituents with high temporal and spatial sampling are crucial for various scientific assessments of ozone depletion and climate change. This thesis explains how such data can be retrieved from satellite limb-scatter observations. The main focus is stratospheric NO2 and O3 measured by the the Optical Spectrograph and Infra-Red Imager System (OSIRIS) aboard the Swedish satellite Odin, although the principles can be used for any similar instrument, for other gases and atmospheric regions. The entire process from detector photon counts to a validated operational data product is covered. Transformations of observed radiances to effective column densities for NO2 and Chappuis triplets for O3 in combination with a normalization, significantly reduces the sensitivity to aerosol, clouds, instrument effects and absolute calibration. A maximum a posteriori inversion method produces well behaved data and provides estimates of measurement uncertainty and vertical resolution for individual profiles. Credible data are generally found between 12 and 42 km with a vertical resolution of around 2 km and random uncertainties of about 5\% for O3 and 10\% for NO2. External comparisons reveal good agreement between 25 and 35 km and long-term stability. Sensitivity studies identify four major concerns; stray light contamination, inaccurate pointing, atmospheric inhomogeneities and clouds. Applications of OSIRIS data and the construction of global climatologies of NO2, O3 and NOy are also presented together with model comparisons which indicate inaccurate simulations of heterogeneous nitrogen processes

    Odin h\ue5ller ett \uf6ga p\ue5 atmosf\ue4ren

    No full text

    Status of the Odin/OSIRIS stratospheric O3 and NO2 data products

    No full text
    This paper describes the status of the stratospheric ozone and nitrogen dioxide data products from the Optical Spectrograph and InfraRed Imager System (OSIRIS) instrument on the Odin satellite. The current version of the data products is 3.0, covering the period from November 2001 to the present. The O3 and NO2 retrieval methods are reviewed along with an overview of the error analyses and geophysical validation status
    corecore