31 research outputs found

    Exploiting the open clusters in the Kepler and CoRoT fields

    Full text link
    The open clusters in the Kepler and CoRoT fields potentially provide tight constraints for tests of stellar models and observational methods because they allow a combination of complementary methods. We are in the process of identi- fying and measuring parameters for detached eclipsing binaries (dEBs) in the open clusters in the Kepler and CoRoT fields. We make use of measurements of dEBs in the clusters to test the accuracy of asteroseismic scaling relations for mass. We are able to provide strong indications that the asteroseismic scaling relations over- estimate the stellar mass, but we are not yet able to distinguish between different proposed corrections from the literature. We argue how our ongoing measurements of more dEBs in more clusters, complemented by dEBs in the field, should be able to break the degeneracy. We also briefly describe how we can identify cluster stars that have evolved through non-standard evolution by making use of ensemble asteroseismology.Comment: Proc. of the workshop "Asteroseismology of stellar populations in the Milky Way" (Sesto, 22-26 July 2013), Astrophysics and Space Science Proceedings, (eds. A. Miglio, L. Girardi, P. Eggenberger, J. Montalban

    Spectroscopic Study of the Open Cluster NGC 6811

    Full text link
    The NASA space telescope Kepler has provided unprecedented time-series observations which have revolutionised the field of asteroseismology, i.e. the use of stellar oscillations to probe the interior of stars. The Kepler-data include observations of stars in open clusters, which are particularly interesting for asteroseismology. One of the clusters observed with Kepler is NGC 6811, which is the target of the present paper. However, apart from high-precision time-series observations, sounding the interiors of stars in open clusters by means of asteroseismology also requires accurate and precise atmospheric parameters as well as cluster membership indicators for the individual stars. We use medium-resolution (R~25,000) spectroscopic observations, and three independent analysis methods, to derive effective temperatures, surface gravities, metallicities, projected rotational velocities and radial velocities, for 15 stars in the field of the open cluster NGC 6811. We discover two double-lined and three single-lined spectroscopic binaries. Eight stars are classified as either certain or very probable cluster members, and three stars are classified as non-members. For four stars, cluster membership could not been assessed. Five of the observed stars are G-type giants which are located in the colour-magnitude diagram in the region of the red clump of the cluster. Two of these stars are surely identified as red clump stars for the first time. For those five stars, we provide chemical abundances of 31 elements. The mean radial-velocity of NGC 6811 is found to be +6.68±\pm0.08 km s1^{-1} and the mean metallicity and overall abundance pattern are shown to be very close to solar with an exception of Ba which we find to be overabundant.Comment: 18 pages, 11 tables, 7 figures, accepted for MNRA

    Systematic Differences in Spectroscopic Analysis of Red Giants

    Full text link
    A spectroscopic analysis of stellar spectra can be carried out using different approaches; different methods, line lists, atomic parameters, solar abundances etc. The resulting atmospheric parameters from these choices can vary beyond quoted uncertainties in the literature. Here we characterize these differences by systematically comparing some of the commonly adopted ingredients; line lists, equivalent width measurements and atomic parameters. High resolution and high signal-to-noise spectroscopic data of one helium-core-burning red giant star in each of the three open clusters, NGC6819, M67 and NGC188 have been obtained with the FIES spectrograph at the Nordic Optical Telescope. The M67 target has been used to benchmark the analysis, as it is a well studied cluster with asteroseismic data from the K2 mission. For the other two clusters we have obtained higher quality data than previously analyzed, which allows us to establish their chemical composition more securely. Using a line by line analysis, we tested several different combinations of line lists and programs to measure equivalent widths of absorption lines to characterize systematic differences within the same spectroscopic method. The obtained parameters for the benchmark star in M67 vary up to ~170 K in T_eff, ~0.4 dex in log g and ~0.25 dex in [Fe/H] between the tested setups. Using the combination of equivalent width measurement program and line list that best reproduce the inferred log g from asteroseismology, we determined the atmospheric parameters for the three stars and securely established the chemical composition of NGC6819 to be ~solar, [Fe/H]=-0.02+-0.01 dex. We have highlighted the significantly different results obtained with different combinations of line lists, programs and atomic parameters, which emphasize the importance of benchmark stars studied with several different methods to anchor spectroscopic analyses.Comment: Accepted for publication in Astronomy and Astrophysic

    Establishing the accuracy of asteroseismic mass and radius estimates of giant stars. II. Revised stellar masses and radii for KIC 8430105

    Get PDF
    Asteroseismic scaling relations can provide high-precision measurements of mass and radius for red giant (RG) stars displaying solar-like oscillations. Their accuracy can be validated and potentially improved using independent and accurate observations of mass, radius, effective temperature and metallicity. We seek to achieve this using long period SB2 eclipsing binaries hosting oscillating RGs. We explore KIC 8430105, for which a previous study found significant asteroseismic overestimation of mass and radius when compared with eclipsing binary measurements. We measured dynamical masses and radii for both components to be significantly lower than previously established, increasing the discrepancy between asteroseismic and dynamical measurements. Our dynamical measurements of the RG component were compared to corresponding measurements of mass and radius using asteroseismic scaling relations. Uncorrected scaling relations overestimated the mass of the RG by 26%, the radius by 11%, and the average density by 7%, in agreement with studies for other systems. However, using a theoretical correction to Δν\Delta \nu, we managed to obtain an asteroseismic average density that is 1σ1\sigma consistent with our dynamical result. We obtained several measurements of νmax\nu_{max} that are not fully consistent. With νmax=76.78±0.81μ\nu_{max} = 76.78 \pm 0.81\mu Hz, the Δν\Delta \nu correction provided 2σ2 \sigma consistent mass and radius for the giant. The age of the system was estimated to be 3.7±0.43.7 \pm 0.4 Gyr

    The M 4 Core Project with HST - III. Search for variable stars in the primary field

    Get PDF
    We present the results of a photometric search for variable stars in the core of the Galactic globular cluster Messier 4 (M 4). The input data are a large and unprecedented set of deep Hubble Space Telescope WFC3 images (large programme GO-12911; 120 orbits allocated), primarily aimed at probing binaries with massive companions by detecting their astrometric wobbles. Though these data were not optimized to carry out a time-resolved photometric survey, their exquisite precision, spatial resolution and dynamic range enabled us to firmly detect 38 variable stars, of which 20 were previously unpublished. They include 19 clustermember eclipsing binaries (confirming the large binary fraction ofM4), RR Lyrae and objects with known X-ray counterparts. We improved and revised the parameters of some among published variables

    Asteroseismology of the Hyades red giant and planet host epsilon Tauri

    Get PDF
    Asteroseismic analysis of solar-like stars allows us to determine physical parameters such as stellar mass, with a higher precision compared to most other methods. Even in a well-studied cluster such as the Hyades, the masses of the red giant stars are not well known, and previous mass estimates are based on model calculations (isochrones). The four known red giants in the Hyades are assumed to be clump (core-helium-burning) stars based on their positions in colour-magnitude diagrams, however asteroseismology offers an opportunity to test this assumption. Using asteroseismic techniques combined with other methods, we aim to derive physical parameters and the evolutionary stage for the planet hosting star epsilon Tau, which is one of the four red giants located in the Hyades. We analysed time-series data from both ground and space to perform the asteroseismic analysis. By combining high signal-to-noise (S/N) radial-velocity data from the ground-based SONG network with continuous space-based data from the revised Kepler mission K2, we derive and characterize 27 individual oscillation modes for epsilon Tau, along with global oscillation parameters such as the large frequency separation and the ratio between the amplitude of the oscillations measured in radial velocity and intensity as a function of frequency. The latter has been measured previously for only two stars, the Sun and Procyon. Combining the seismic analysis with interferometric and spectroscopic measurements, we derive physical parameters for epsilon Tau, and discuss its evolutionary status.Comment: 13 pages, 13 figures, 4 tables, accepted for publication in Astronomy & Astrophysic

    An asteroseismic membership study of the red giants in three open clusters observed by Kepler: NGC6791, NGC6819, and NGC6811

    Full text link
    Studying star clusters offers significant advances in stellar astrophysics due to the combined power of having many stars with essentially the same distance, age, and initial composition. This makes clusters excellent test benches for verification of stellar evolution theory. To fully exploit this potential, it is vital that the star sample is uncontaminated by stars that are not members of the cluster. Techniques for determining cluster membership therefore play a key role in the investigation of clusters. We present results on three clusters in the Kepler field of view based on a newly established technique that uses asteroseismology to identify fore- or background stars in the field, which demonstrates advantages over classical methods such as kinematic and photometry measurements. Four previously identified seismic non-members in NGC6819 are confirmed in this study, and three additional non-members are found -- two in NGC6819 and one in NGC6791. We further highlight which stars are, or might be, affected by blending, which needs to be taken into account when analysing these Kepler data.Comment: 12 pages, 9 figures, 5 tables, accepted by Ap
    corecore