1,332 research outputs found

    Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries

    Get PDF
    Inspiral signals from binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave interferometers (LIGO, Virgo, GEO-600 and TAMA-300). We present parameter-estimation simulations for inspirals of black-hole--neutron-star binaries using Markov-chain Monte-Carlo methods. For the first time, we have both estimated the parameters of a binary inspiral source with a spinning component and determined the accuracy of the parameter estimation, for simulated observations with ground-based gravitational-wave detectors. We demonstrate that we can obtain the distance, sky position, and binary orientation at a higher accuracy than previously suggested in the literature. For an observation of an inspiral with sufficient spin and two or three detectors we find an accuracy in the determination of the sky position of typically a few tens of square degrees.Comment: v2: major conceptual changes, 4 pages, 1 figure, 1 table, submitted to ApJ

    The universality of synchrony: critical behavior in a discrete model of stochastic phase coupled oscillators

    Full text link
    We present the simplest discrete model to date that leads to synchronization of stochastic phase-coupled oscillators. In the mean field limit, the model exhibits a Hopf bifurcation and global oscillatory behavior as coupling crosses a critical value. When coupling between units is strictly local, the model undergoes a continuous phase transition which we characterize numerically using finite-size scaling analysis. In particular, the onset of global synchrony is marked by signatures of the XY universality class, including the appropriate classical exponents β\beta and ν\nu, a lower critical dimension dlc=2d_{lc} = 2, and an upper critical dimension duc=4d_{uc}=4.Comment: 4 pages, 4 figure

    Parametric phase transition in one dimension

    Full text link
    We calculate analytically the phase boundary for a nonequilibrium phase transition in a one-dimensional array of coupled, overdamped parametric harmonic oscillators in the limit of strong and weak spatial coupling. Our results show that the transition is reentrant with respect to the spatial coupling in agreement with the prediction of the mean field theory.Comment: to appear in Europhysics letter

    Critical behavior and synchronization of discrete stochastic phase coupled oscillators

    Full text link
    Synchronization of stochastic phase-coupled oscillators is known to occur but difficult to characterize because sufficiently complete analytic work is not yet within our reach, and thorough numerical description usually defies all resources. We present a discrete model that is sufficiently simple to be characterized in meaningful detail. In the mean field limit, the model exhibits a supercritical Hopf bifurcation and global oscillatory behavior as coupling crosses a critical value. When coupling between units is strictly local, the model undergoes a continuous phase transition which we characterize numerically using finite-size scaling analysis. In particular, we explicitly rule out multistability and show that that the onset of global synchrony is marked by signatures of the XY universality class. Our numerical results cover dimensions d=2, 3, 4, and 5 and lead to the appropriate XY classical exponents \beta and \nu, a lower critical dimension d_{lc} = 2, and an upper critical dimension d_{uc}=4

    Velocity Correlations, Diffusion and Stochasticity in a One-Dimensional System

    Full text link
    We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test particle plays the role of a microscopic "piston" that separates two hard-point gases with different concentrations and arbitrary initial velocity distributions. In the homogeneous case when the gases on either side of the piston are in the same macroscopic state, we compute and analyze the stationary velocity autocorrelation function C(t). Explicit expressions are obtained for certain typical velocity distributions, serving to elucidate in particular the asymptotic behavior of C(t). It is shown that the occurrence of a non-vanishing probability mass at zero velocity is necessary for the occurrence of a long-time tail in C(t). The conditions under which this is a t−3t^{-3} tail are determined. Turning to the inhomogeneous system with different macroscopic states on either side of the piston, we determine its effective diffusion coefficient from the asymptotic behavior of the variance of its position, as well as the leading behavior of the other moments about the mean. Finally, we present an interpretation of the effective noise arising from the dynamics of the two gases, and thence that of the stochastic process to which the position of any particle in the system reduces in the thermodynamic limit.Comment: 22 files, 2 eps figures. Submitted to PR

    Noise induced transition from an absorbing phase to a regime of stochastic spatiotemporal intermittency

    Get PDF
    We introduce a stochastic partial differential equation capable of reproducing the main features of spatiotemporal intermittency (STI). Additionally the model displays a noise induced transition from laminarity to the STI regime. We show by numerical simulations and a mean-field analysis that for high noise intensities the system globally evolves to a uniform absorbing phase, while for noise intensities below a critical value spatiotemporal intermittence dominates. A quantitative computation of the loci of this transition in the relevant parameter space is presented.Comment: 4 pages, 6 eps figures. Submitted to Phys. Rev. Lett. See for additional information http://imedea.uib.es

    Binary black hole spectroscopy

    Full text link
    We study parameter estimation with post-Newtonian (PN) gravitational waveforms for the quasi-circular, adiabatic inspiral of spinning binary compact objects. The performance of amplitude-corrected waveforms is compared with that of the more commonly used restricted waveforms, in Advanced LIGO and EGO. With restricted waveforms, the properties of the source can only be extracted from the phasing. For amplitude-corrected waveforms, the spectrum encodes a wealth of additional information, which leads to dramatic improvements in parameter estimation. At distances of ∼100\sim 100 Mpc, the full PN waveforms allow for high-accuracy parameter extraction for total mass up to several hundred solar masses, while with the restricted ones the errors are steep functions of mass, and accurate parameter estimation is only possible for relatively light stellar mass binaries. At the low-mass end, the inclusion of amplitude corrections reduces the error on the time of coalescence by an order of magnitude in Advanced LIGO and a factor of 5 in EGO compared to the restricted waveforms; at higher masses these differences are much larger. The individual component masses, which are very poorly determined with restricted waveforms, become measurable with high accuracy if amplitude-corrected waveforms are used, with errors as low as a few percent in Advanced LIGO and a few tenths of a percent in EGO. The usual spin-orbit parameter β\beta is also poorly determined with restricted waveforms (except for low-mass systems in EGO), but the full waveforms give errors that are small compared to the largest possible value consistent with the Kerr bound. This suggests a way of finding out if one or both of the component objects violate this bound. We also briefly discuss the effect of amplitude corrections on parameter estimation in Initial LIGO.Comment: 28 pages, many figures. Final version accepted by CQG. More in-depth treatment of component mass errors and detectability of Kerr bound violations; improved presentatio

    Characterization of chaos in random maps

    Full text link
    We discuss the characterization of chaotic behaviours in random maps both in terms of the Lyapunov exponent and of the spectral properties of the Perron-Frobenius operator. In particular, we study a logistic map where the control parameter is extracted at random at each time step by considering finite dimensional approximation of the Perron-Frobenius operatorComment: Plane TeX file, 15 pages, and 5 figures available under request to [email protected]

    System size resonance in coupled noisy systems and in the Ising model

    Get PDF
    We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean field are observed with the rate depending on the ensemble size. When a small periodic force acts on the ensemble, the linear response of the system has a maximum at a certain system size, similar to the stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different types of noisy oscillators and for different ensembles -- lattices with nearest neighbors coupling and globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.Comment: 4 page
    • …
    corecore