405 research outputs found

    Efficient inference for time-varying behavior during learning

    Get PDF
    The process of learning new behaviors over time is a problem of great interest in both neuroscience and artificial intelligence. However, most standard analyses of animal training data either treat behavior as fixed or track only coarse performance statistics (e.g., accuracy, bias), providing limited insight into the evolution of the policies governing behavior. To overcome these limitations, we propose a dynamic psychophysical model that efficiently tracks trial-to-trial changes in behavior over the course of training. Our model consists of a dynamic logistic regression model, parametrized by a set of time-varying weights that express dependence on sensory stimuli as well as task-irrelevant covariates, such as stimulus, choice, and answer history. Our implementation scales to large behavioral datasets, allowing us to infer 500K parameters (e.g. 10 weights over 50K trials) in minutes on a desktop computer. We optimize hyperparameters governing how rapidly each weight evolves over time using the decoupled Laplace approximation, an efficient method for maximizing marginal likelihood in non-conjugate models. To illustrate performance, we apply our method to psychophysical data from both rats and human subjects learning a delayed sensory discrimination task. The model successfully tracks the psychophysical weights of rats over the course of training, capturing day-to-day and trial-to-trial fluctuations that underlie changes in performance, choice bias, and dependencies on task history. Finally, we investigate why rats frequently make mistakes on easy trials, and suggest that apparent lapses can be explained by sub-optimal weighting of known task covariates

    Collicular circuits for flexible sensorimotor routing

    Get PDF
    Context-based sensorimotor routing is a hallmark of executive control. Pharmacological inactivations in rats have implicated the midbrain superior colliculus (SC) in this process. But what specific role is this, and what circuit mechanisms support it? Here we report a subset of rat SC neurons that instantiate a specific link between the representations of context and motor choice. Moreover, these neurons encode animals’ choice far earlier than other neurons in the SC or in the frontal cortex, suggesting that their neural dynamics lead choice computation. Optogenetic inactivations revealed that SC activity during context encoding is necessary for choice behavior, even while that choice behavior is robust to inactivations during choice formation. Searches for SC circuit models matching our experimental results identified key circuit predictions while revealing some a priori expected features as unnecessary. Our results reveal circuit mechanisms within the SC that implement response inhibition and context-based vector inversion during executive control

    Lateral orbitofrontal cortex promotes trial-by-trial learning of risky, but not spatial, biases

    Get PDF
    Individual choices are not made in isolation but are embedded in a series of past experiences, decisions, and outcomes. The effects of past experiences on choices, often called sequential biases, are ubiquitous in perceptual and value-based decision-making, but their neural substrates are unclear. We trained rats to choose between cued guaranteed and probabilistic rewards in a task in which outcomes on each trial were independent. Behavioral variability often reflected sequential effects, including increased willingness to take risks following risky wins, and spatial ‘win-stay/lose-shift’ biases. Recordings from lateral orbitofrontal cortex (lOFC) revealed encoding of reward history and receipt, and optogenetic inhibition of lOFC eliminated rats’ increased preference for risk following risky wins, but spared other sequential effects. Our data show that different sequential biases are neurally dissociable, and the lOFC’s role in adaptive behavior promotes learning of more abstract biases (here, biases for the risky option), but not spatial ones

    Incremental Mutual Information: A New Method for Characterizing the Strength and Dynamics of Connections in Neuronal Circuits

    Get PDF
    Understanding the computations performed by neuronal circuits requires characterizing the strength and dynamics of the connections between individual neurons. This characterization is typically achieved by measuring the correlation in the activity of two neurons. We have developed a new measure for studying connectivity in neuronal circuits based on information theory, the incremental mutual information (IMI). By conditioning out the temporal dependencies in the responses of individual neurons before measuring the dependency between them, IMI improves on standard correlation-based measures in several important ways: 1) it has the potential to disambiguate statistical dependencies that reflect the connection between neurons from those caused by other sources (e. g. shared inputs or intrinsic cellular or network mechanisms) provided that the dependencies have appropriate timescales, 2) for the study of early sensory systems, it does not require responses to repeated trials of identical stimulation, and 3) it does not assume that the connection between neurons is linear. We describe the theory and implementation of IMI in detail and demonstrate its utility on experimental recordings from the primate visual system

    Extracting the dynamics of behavior in sensory decision-making experiments

    Get PDF
    Decision-making strategies evolve during training and can continue to vary even in well-trained animals. However, studies of sensory decision-making tend to characterize behavior in terms of a fixed psychometric function that is fit only after training is complete. Here, we present PsyTrack, a flexible method for inferring the trajectory of sensory decision-making strategies from choice data. We apply PsyTrack to training data from mice, rats, and human subjects learning to perform auditory and visual decision-making tasks. We show that it successfully captures trial-to-trial fluctuations in the weighting of sensory stimuli, bias, and task-irrelevant covariates such as choice and stimulus history. This analysis reveals dramatic differences in learning across mice and rapid adaptation to changes in task statistics. PsyTrack scales easily to large datasets and offers a powerful tool for quantifying time-varying behavior in a wide variety of animals and tasks

    Detection and localization of multiple rate changes in Poisson spike trains

    Get PDF
    Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. In statistical spike train analysis, stochastic point process models usually assume stationarity, in particular that the underlying spike train shows a constant firing rate (e.g. [1]). However, such models can lead to misinterpretation of the associated tests if the assumption of rate stationarity is not met (e.g. [2]). Therefore, the analysis of nonstationary data requires that rate changes can be located as precisely as possible. However, present statistical methods focus on rejecting the null hypothesis of stationarity without explicitly locating the change point(s) (e.g. [3]). We propose a test for stationarity of a given spike train that can also be used to estimate the change points in the firing rate. Assuming a Poisson process with piecewise constant firing rate, we propose a Step-Filter-Test (SFT) which can work simultaneously in different time scales, accounting for the high variety of firing patterns in experimental spike trains. Formally, we compare the numbers N1=N1(t,h) and N2=N2(t,h) of spikes in the time intervals (t-h,t] and (h,t+h]. By varying t within a fine time lattice and simultaneously varying the interval length h, we obtain a multivariate statistic D(h,t):=(N1-N2)/V(N1+N2), for which we prove asymptotic multivariate normality under homogeneity. From this a practical, graphical device to spot changes of the firing rate is constructed. Our graphical representation of D(h,t) (Figure 1A) visualizes the changes in the firing rate. For the statistical test, a threshold K is chosen such that under homogeneity, |D(h,t)|<K holds for all investigated h and t with probability 0.95. This threshold can indicate potential change points in order to estimate the inhomogeneous rate profile (Figure 1B). The SFT is applied to a sample data set of spontaneous single unit activity recorded from the substantia nigra of anesthetized mice. In this data set, multiple rate changes are identified which agree closely with visual inspection. In contrast to approaches choosing one fixed kernel width [4], our method has advantages in the flexibility of h

    Self-organization in the olfactory system: one shot odor recognition in insects

    Get PDF
    We show in a model of spiking neurons that synaptic plasticity in the mushroom bodies in combination with the general fan-in, fan-out properties of the early processing layers of the olfactory system might be sufficient to account for its efficient recognition of odors. For a large variety of initial conditions the model system consistently finds a working solution without any fine-tuning, and is, therefore, inherently robust. We demonstrate that gain control through the known feedforward inhibition of lateral horn interneurons increases the capacity of the system but is not essential for its general function. We also predict an upper limit for the number of odor classes Drosophila can discriminate based on the number and connectivity of its olfactory neurons

    Prior and Present Evidence: How Prior Experience Interacts with Present Information in a Perceptual Decision Making Task

    Get PDF
    Vibrotactile discrimination tasks have been used to examine decision making processes in the presence of perceptual uncertainty, induced by barely discernible frequency differences between paired stimuli or by the presence of embedded noise. One lesser known property of such tasks is that decisions made on a single trial may be biased by information from prior trials. An example is the time-order effect whereby the presentation order of paired stimuli may introduce differences in accuracy. Subjects perform better when the first stimulus lies between the second stimulus and the global mean of all stimuli on the judged dimension ("preferred" time-orders) compared to the alternative presentation order ("nonpreferred" time-orders). This has been conceptualised as a "drift" of the first stimulus representation towards the global mean of the stimulus-set (an internal standard). We describe the influence of prior information in relation to the more traditionally studied factors of interest in a classic discrimination task.Sixty subjects performed a vibrotactile discrimination task with different levels of uncertainty parametrically induced by increasing task difficulty, aperiodic stimulus noise, and changing the task instructions whilst maintaining identical stimulus properties (the "context").The time-order effect had a greater influence on task performance than two of the explicit factors-task difficulty and noise-but not context. The influence of prior information increased with the distance of the first stimulus from the global mean, suggesting that the "drift" velocity of the first stimulus towards the global mean representation was greater for these trials.Awareness of the time-order effect and prior information in general is essential when studying perceptual decision making tasks. Implicit mechanisms may have a greater influence than the explicit factors under study. It also affords valuable insights into basic mechanisms of information accumulation, storage, sensory weighting, and processing in neural circuits

    A neural integrator model for planning and value-based decision making of a robotics assistant

    Get PDF
    Modern manufacturing and assembly environments are characterized by a high variability in the built process which challenges human–robot cooperation. To reduce the cognitive workload of the operator, the robot should not only be able to learn from experience but also to plan and decide autonomously. Here, we present an approach based on Dynamic Neural Fields that apply brain-like computations to endow a robot with these cognitive functions. A neural integrator is used to model the gradual accumulation of sensory and other evidence as time-varying persistent activity of neural populations. The decision to act is modeled by a competitive dynamics between neural populations linked to different motor behaviors. They receive the persistent activation pattern of the integrators as input. In the first experiment, a robot learns rapidly by observation the sequential order of object transfers between an assistant and an operator to subsequently substitute the assistant in the joint task. The results show that the robot is able to proactively plan the series of handovers in the correct order. In the second experiment, a mobile robot searches at two different workbenches for a specific object to deliver it to an operator. The object may appear at the two locations in a certain time period with independent probabilities unknown to the robot. The trial-by-trial decision under uncertainty is biased by the accumulated evidence of past successes and choices. The choice behavior over a longer period reveals that the robot achieves a high search efficiency in stationary as well as dynamic environments.The work received financial support from FCT through the PhD fellowships PD/BD/128183/2016 and SFRH/BD/124912/2016, the project “Neurofield” (PTDC/MAT-APL/31393/2017) and the research centre CMAT within the project UID/MAT/00013/2013

    Effects of the physiological parameters on the signal-to-noise ratio of single myoelectric channel

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An important measure of the performance of a myoelectric (ME) control system for powered artificial limbs is the signal-to-noise ratio (SNR) at the output of ME channel. However, few studies illustrated the neuron-muscular interactive effects on the SNR at ME control channel output. In order to obtain a comprehensive understanding on the relationship between the physiology of individual motor unit and the ME control performance, this study investigates the effects of physiological factors on the SNR of single ME channel by an analytical and simulation approach, where the SNR is defined as the ratio of the mean squared value estimation at the channel output and the variance of the estimation.</p> <p>Methods</p> <p>Mathematical models are formulated based on three fundamental elements: a motoneuron firing mechanism, motor unit action potential (MUAP) module, and signal processor. Myoelectric signals of a motor unit are synthesized with different physiological parameters, and the corresponding SNR of single ME channel is numerically calculated. Effects of physiological multi factors on the SNR are investigated, including properties of the motoneuron, MUAP waveform, recruitment order, and firing pattern, etc.</p> <p>Results</p> <p>The results of the mathematical model, supported by simulation, indicate that the SNR of a single ME channel is associated with the voluntary contraction level. We showed that a model-based approach can provide insight into the key factors and bioprocess in ME control. The results of this modelling work can be potentially used in the improvement of ME control performance and for the training of amputees with powered prostheses.</p> <p>Conclusion</p> <p>The SNR of single ME channel is a force, neuronal and muscular property dependent parameter. The theoretical model provides possible guidance to enhance the SNR of ME channel by controlling physiological variables or conscious contraction level.</p
    • 

    corecore