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Abstract Modern manufacturing and assembly envi-

ronments are characterized by a high variability in the

built process which challenges human-robot coopera-

tion. To reduce the cognitive workload of the opera-

tor, the robot should not only be able to learn from

experience but also to plan and decide autonomously.

Here, we present an approach based on Dynamic Neu-

ral Fields that applies brain-like computations to en-

dow a robot with these cognitive functions. A neural

integrator is used to model the gradual accumulation

of sensory and other evidence as time-varying persis-

tent activity of neural populations. The decision to act

is modeled by a competitive dynamics between neural

populations linked to different motor behaviors. They

receive the persistent activation pattern of the integra-

tors as input. In the first experiment, a robot learns

rapidly by observation the sequential order of object

transfers between an assistant and an operator to sub-

sequently substitute the assistant in the joint task. The

results show that the robot is able to proactively plan

the series of handovers in the correct order. In the sec-

ond experiment, a mobile robot searches at two differ-

ent workbenches for a specific object to deliver it to an

operator. The object may appear at the two locations

in a certain time period with independent probabilities

unknown to the robot. The trial-by-trial decision un-

der uncertainty is biased by the accumulated evidence

of past successes and choices. The choice behavior over
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a longer period reveals that the robot achieves a high

search efficiency in stationary as well as dynamic envi-

ronments.
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1 Introduction

In recent years, the paradigm shift from mass produc-

tion to mass customization represents new challenges

but also new opportunities for human-robot interac-

tions in industrial assembly processes [29, 35]. Tradi-

tionally, industrial robots perform assembly steps in

isolation from people, continuously repeating a care-

fully predefined sequence of actions. The appearance

of of-the-shelf industrial robots like ABB’s Frida, Re-

think’s Sawyer or KUKA’s LBR iiwa, certified to safely

operate alongside humans, makes it in principle pos-

sible to involve robots as coworkers in the final as-

sembly process. However, to efficiently support the

operator in costumer-oriented production, the robots

should be able to quickly adapt to changing tasks

and production sequences that come along with prod-

uct variations. This means that the robots should be

equipped with some higher-level cognitive functions

like action planning, learning and decision making that

allow them to increase their scope of operation au-

tonomously [3, 39, 58]. Otherwise, the need to closely

supervise and control the actions of the robotics helper

would further increase the already high cognitive work-

load for the human operator in complex assembly pro-

cesses. Even if the robot is not directly involved in the

assembly work and only supports the operator by de-

livering parts and tools, a proactive attitude to timely
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hold out the object that the operator needs next has a

major impact on user satisfaction [30, 32, 46].

A promising research line to overcome the lack of auton-

omy of today’s industrial robots is to implement in their

control architecture models of human cognition. While

classical AI inspired approaches are based on the logical

manipulation of abstract symbols [1, 39, 44], the emerg-

ing area of Neurorobotics exploits the fundamentals of

neuronal dynamics as a basis of higher-level cognitive

functions [5, 16, 18, 34]. A gradual accumulation of in-

formation over time is a neural computation of critical

importance to the organization of task-appropriate be-

havior [12]. Persistent, or slowly varying, neural popula-

tion activity described in many cortical and subcortical

brain areas is commonly believed to represent a neural

correlate of evidence accumulation for linking percep-

tion and action [10, 26]. Persistent activity has been ob-

served in tasks in which information no longer present

in the immediate environment has to be maintained for

future adaptive behavior (working memory), during an

interval prior to or in preparation of a forthcoming goal-

directed action (motor planning), or during the process

of choosing one option from a set of alternatives on the

basis of sensory evidence (perceptual decision making)

(for review see [17]). Moreover, sustained population ac-

tivity that appears to be systematically modulated by

the outcome of previous actions across multiple trials

is thought to represent a neural substrate for learning

in an unfamiliar and stochastic environment [28].

One proposed neural mechanism for accumulation of

inputs and self-sustained activity over behaviorally rel-

evant timescales is based on excitatory feedback in re-

current neural networks [52]. A critical requirement is

the fine tuning of the synaptic interaction strengths. It

ensures that the feedback is kept in exactly the right

range so that the sustained activity at any time rep-

resents the time integral of past inputs. To solve the

fine tuning problem and increase robustness, additional

mechanisms like for instance the use of bistable neu-

ral units with different activation thresholds have been

proposed ([33], for review of different computational ap-

proaches see [50]). Due to the bistability, the network

dynamics exhibits multiple stable states even with im-

precisely tuned feedback. While the increased robust-

ness of the neural integrator certainly favors the appli-

cation in real-world robotics experiments, it comes with

the price of a loss of sensitivity to weaker evidence. Only

a sufficiently strong input may switch between adjacent

stable states.

In this paper, we present a novel neural integrator

model [63] based on the theoretical framework of Dy-

namic Neural Fields (DNF) that provides a continu-

ous attractor to perform temporal integration of exter-

nal and internal inputs of any strength. At the same

time, the integrator mechanism is robust to perturba-

tions in the network connectivity. We test the model in

two robotics applications with the ultimate goal to ad-

vance the autonomy of future robotics assistants. The

focus of the experiments is on autonomous decision

making guided by past experiences. To give a broader

perspective on HRI applications beyond the specific ex-

amples, we explore in the Discussion how the exper-

imental results may be exploited to address some of

the key challenges that have been identified for close

human-robot collaborative work in a manufacturing en-

vironment [40, 58].

The first robotics experiment is a pipe assembly task in

which a robot first watches a human assistant grasping

a series of pipes to hand them over to an operator per-

forming the assembly steps. The goal for the robot is

to learn the serial order of handovers to subsequently

substitute the human assistant in the joint task. Or-

der learning is guided by the information provided by

the vision system about the color and the length of

each pipe. During observation, the neural integrator of

a memory field establishes a gradient of persistent acti-

vations over distinct neural subpopulations tuned to a

specific color-length combination. The integration time

from input onset to the end of the assembly sequence

defines the level of persistent activity. Consequently, the

neural representation of the first pipe to be grasped has

the highest activation whereas the representation of the

last pipe has the lowest. During joint execution, the

competitive neurodynamics of a decision field, which

receives the stable activation gradient as input, drives

the sequential initiation of proactive handovers of all

pipes in the correct order.

The second robotics experiment is a simulated mate-

rial handling system in which a mobile robot trans-

ports parts or subassembly parts between workstations.

Specifically, the robot has to search at two workbenches

where a required part may appear with a certain prob-

ability in a fixed period of time. Humans and other

animals show in a scenario with constant probabilities

a choice behavior known as the matching strategy: the

fraction of choices made to any option will match the

fraction of total success (or reward) earned from that

option [27, 37]. Using the neural integrator model to in-

corporate short-term memories of past choices and past

successes in the decision process endows the robot with

the matching behavior. Importantly, we show that the

robot autonomously adapts its internal valuation of the

competing alternatives and consequently its choice be-

havior to unsigned changes in the success probabilities

[56]. The robot is thus better able to cope with specific

challenges in more flexible and uncertain manufactur-
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ing systems.

The present work on planning and value-based deci-

sion making of a proactive service robot in an indus-

trial environment complements our earlier research on

a DNF architecture for natural human-robot coopera-

tion. Here, the focus was on the implementation of an

action understanding and goal inference capacity that

allows the robot to coordinate its decisions and behav-

iors with a human in order to achieve a common goal

[7, 19].

The remainder of this article is organized as follows:

The next section summarizes basic principles of DNF

theory and introduces the mathematical models. Sec-

tion 3 is divided in two subsections in which we describe

the two robotics applications, introduce the DNF archi-

tectures for sequence learning and value-based decision

making, and present results of the robotics experiments.

Finally, we discuss the results and related HRI research

and give an outlook on future work. Some technical im-

plementation issues and the model parameters are given

in an Appendix.

2 Dynamic Field models

2.1 General principles and field equation

Dynamic Neural Fields (DNFs) represent a theoreti-

cal framework for developing cognitive robot control

architectures which is inspired by fundamental corti-

cal processing mechanisms [18]. Sensory information

guiding behavior in cognitive tasks is represented by

supra-threshold activity patterns or bumps in recur-

rently connected neural networks. These patterns are

initially triggered by transient inputs from external

sources but become self-sustained due to the recurrent

interactions within the neural populations. In many

robotics applications, the dynamic neural fields are de-

fined over continuous metric dimensions such as for in-

stance the direction in which the robot has to move

or the size and color of an object to be manipulated

[4, 22, 23]. Sensory information about a specific value

along the coded dimension defines the field location

where the self-stabilized bump develops. Due to the

assumed translation invariance of the neural interac-

tions, the field dynamics supports a spatial continuum

of persistent activity patterns known as a “continuous

attractor” [11].

The field model first proposed by Amari [2] is specifi-

cally popular in applications since it favors analytical

treatment [2, 14, 24]:

τ
∂u(r, t)

∂t
= −u(r, t) +

∫
Ω

w(r, r′)f(u(r′, t)− θ)dr′

− h+ I(r, t) + ε1/2dW (r, t),

(1)

where u(r, t) represents the activity at time t of a neu-

ron at field position r in a spatial domain Ω which is

usually a subset of R
d. For the present applications,

fields with dimensions d = 1 and d = 2 are used.

The parameter τ > 0 defines the time scale, I(r, t) rep-

resents a time-dependent, localized input centered at

site r, and h > 0 defines the stable resting state of a field

without external input. w(r, r′) is the synaptic weight

distribution which determines the connection strength

between interacting neurons at positions r and r′. The
distribution is assumed to depend on the Euclidian dis-

tance, |r − r′|, with excitation dominating at shorter

ranges and surround inhibition. An example is given

by a Gaussian function minus a constant:

wlat(r) = Alate
(−r2/2σ2

lat) − glat, (2)

with Alat > glat > 0 and σlat > 0. Another widely

used connectivity function of lateral inhibition type has

Mexican hat shape. It is given by the difference of two

Gaussians:

wmex(r) = Aexe
(−r2/2σ2

ex)−Aine
(−r2/2σ2

in)− gmex, (3)

where Aex > Ain > 0 and σin > σex > 0 and gmex > 0.

f(u− θ) denotes the firing rate function with threshold

θ ≥ 0. A typical example is a smooth sigmoidal function

with steepness parameter β

f(u) =
1

1 + e−β(u−θ)
. (4)

For β → ∞, f converges to the Heaviside function H

defined by

H(u) =

{
1 if u > θ,

0 otherwise,
(5)

which we use throughout the paper. The threshold is

chosen as θ = 0 [2]. Finally, the additive noise term

dW (r, t) describes the increment of a spatially depen-

dent Wiener process with amplitude ε � 1. We use the

noise term to break the symmetry in decision processes

in which different choices get equal or nearly equal sup-

port from input sources.
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Fig. 1: Input-driven steady state solutions of models (1) and (6) are shown. Input parameters are AIj ∈ {1.5, 4, 2}
and σI = 1.5 and input duration is dIj = 1. (a) Single-bump of the Amari model (1). The connectivity function is

given by (2) with Alat = 1.5, σlat = 1 and glat = 0.5. (b) Three-bump in u(x) (solid line) of the two-field model (6)

and corresponding activity pattern of v(x) (dashed line). The connectivity function is given by (3) with Aex = 3,

Ain = 1.5, σex = 2, σin = 4 and gmex = 0.1.

2.2 Two-field neural integrator

In applications of the Amari model, a sufficiently strong

transient input is used to switch between a stable rest-

ing state and the bump attractor, thus implementing

a memory function. However, since the shape of the

bump is exclusively defined by the recurrent interac-

tions within the population, the model cannot be used

to memorize in addition the strength or duration of

sensory signals nor can it be applied as an integrator

of inputs arriving at different points in time. The new

field model formalized by two coupled Amari equations

overcomes this limitation [63]. Bump solutions lie on a

two-dimensional attractor, defined by a continuum of

positions and amplitudes. Bumps with varying ampli-

tudes may thus be used to robustly represent the accu-

mulation of sensory and other evidence over time.

The activities at time t and spatial position r of the

two coupled fields, u(r, t) and v(r, t), are governed by

the equations:

τ
∂u(r, t)

∂t
= −u(r, t) + v(r, t)

+

∫
Ω

wmex(r, r
′)f(u(r′, t)− θ)dr′

+ I(r, t) + ε1/2dW (r, t),

(6a)

τ
∂v(r, t)

∂t
= −v(r, t) + u(r, t)

−
∫
Ω

wmex(r, r
′)f(u(r′, t)− θ)dr′.

(6b)

2.3 Multi-item memory versus decision making

Fig. 1 shows two examples of input-driven bump solu-

tions in a one-dimensional field that are used in robotics

applications to implement two fundamental cognitive

functions, working memory and decision making. The

evolution of a single bump shown in Fig. 1a is governed

by the Amari equation (1) with strong lateral inhibition

(2) whereas the dynamics of the two-field model (6) sup-

ports the multi-bump solution shown in Fig. 1b. Both

fields received simultaneously three transient inputs of

equal duration but different strengths, AIj , modeled as

Gaussians centered at positions xcj :

I(x) =
3∑

j=1

AIje
(−(x−xcj

)2/2σ2
I). (7)

The inputs may represent for instance sensory informa-

tion about movement direction to three potential tar-

gets. In the Amari case, the strong competition between

stimulated field sites guarantees that only one bump

may exist at all time. The bump represents in this ex-

ample a decision to engage in the choice getting the

strongest sensory support. The multi-bump pattern, on

the other hand, can be seen as a multi-item memory of

all possible choices including their relative strengths.

2.4 Choosing parameter values

The design of DNF-architectures for robot control is

based on localized activation patterns as fundamental

units representing task-relevant information. For the

designer, it is therefore important to understand the

conditions for the model parameters that guarantee
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Fig. 2: Integral W (x) of weight function w(x) given by (2) (a) and (3) (b). Parameters of the weight functions as

in Fig. 1.

Fig. 3: Stability of 1-bump solutions in the Amari model (a) and the two-field model (b). Parameters of the

connectivity functions (2) and (3) as in Fig. 1

their existence and stability. We briefly summarize here

the main ideas of an analytical approach developed by

Amari [2]. For a more detailed tutorial in the context

of robotics applications see [18]. A recent overview of

analytical and numerical tools for DNFs can be found

in [15].

Amari’s approach is based on the assumption that for

the choice of the Heaviside step function (5), the pat-

tern formation process can be understood by analyz-

ing the evolution equations of the bump boundaries.

Amari defines the finite region of suprathreshold activ-

ity of a single stationary bump as R(u) = {x|u(x) >

θ} = (x1, x2) with u(x1) = u(x2) = θ and derives a

simple condition for the existence of a bump of width

Δ = x2 − x1. In the absence of input, the existence of

this solution is determined by the roots of

F (Δ) = −θ +W (Δ) = 0, (8)

where W (x) is the integral of weight function w(x)

W (x) =

∫ x

0

w(y)dy. (9)

The analogous condition for the bump existence in the

two-field model is determined by the roots of

F (Δ) = −2θ +K +W (Δ) = 0, (10)

where K equals the sum of the initial states at t = 0

of the two fields, that is, K = u(x, 0) + v(x, 0), which

we choose to be constant in the applications. Fig. 2

illustrates the existence conditions for the two interac-

tions kernels and a Heaviside nonlinearity with thresh-

old θ = 0 used in model simulations of Fig.1. For both

models, the bump solution is stable if

dF (Δ)/dΔ < 0, (11)

and unstable otherwise. Fig. 3 shows that for range of

threshold values, 0 ≤ θ < Wmax for the Amari model

and 0 ≤ θ < (Wmax+K)/2 for the two-field model, two

bump solutions co-exist which have different widths,

Δ′ < Δ. The wider bump is stable (solid line) whereas

the narrower bump is unstable (dashed line). With the

other model parameters fixed, the shape of the stable

bump can be controlled by varying the parameter θ.
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Fig. 4: Bifurcation curves showing 1-bump solutions of the Amari model (a) and the two-field model (b).

This is evident for the bump width shown in Fig. 3. Us-

ing tools from numerical bifurcation analysis [47], fur-

ther insights into the dependence of the bump shape on

model parameters can be gained by tracking the bump

solution when a specific model parameter is changed.

An example is shown in Fig. 4 where the maximum

bump activity is plotted as as function of θ. To sum-

marize, there exists a whole range of suitable parameter

values and this range can be determined analytically.

The evolution of bumps is triggered by localized in-

put from connected fields with suprathreshold activity

patterns, and/or localized input from external sources

(e.g., robot camera). We model the external input for

convenance as a Gaussian function with strength pa-

rameter AI and standard deviation σI . Since for the

two-field neural integrator, the width of a transient in-

put affects bump width, 2σI is chosen in order to ap-

proximately match the bump width Δ defined by con-

dition (10). Since for the current applications, only the

peak position of the bump matters, σI is not a sensible

parameter. Input strength AI and input duration, how-

ever, play an important role. The accumulated evidence

from internal and external input sources is reflected in

the bump height which affects decision processes. While

the two-field model integrates and memorizes localized

input of any strength, we use the Amari model in a dy-

namic regime in which input strength may make a dif-

ference. For the choice θ > 0, the two bump solutions

defined by condition (8) co-exists with a stable resting

state, u(x) = 0 ∀x [2]. This means that only a suffi-

ciently strong input, AI > θ, may drive the evolution

of a self-stabilized bump. Weaker input “pre-activates”

neural populations only, and the activity decays to rest-

ing level when the input is removed.

For the building and numerically solving of complex

control architectures consisting of many coupled DNFs

(e.g., the HRI architectures in [7, 19]) open source soft-

ware frameworks such as Cedar [41] exist. They pro-

vide graphical programming interfaces which allow the

user to individually parameterize each field along the

lines just discussed. Cedar also allows to integrate sim-

ulations of a robot, of its sensors, and of its working

environment.

3 Robotics applications

3.1 Sequence learning and planning in a pipe assembly

task

The first experiment is a pipe assembly task in which

the robot learns the sequential order of handing

over different pipes to an operator who performs the

assembly steps. We apply a learning by demonstration

paradigm which has been successfully used in the

past to teach robots sequential tasks [9, 21, 55]. An

important practical prerequisite is that robot learning

should be efficient and fast since the human tutors

cannot be expected to repeat the demonstration of

the action sequence several times [45]. Since the robot

is not directly involved in the assembly work, only

the sequence of pipe transfers between the assistant

and the operator is demonstrated for simplicity. Note

however that the neural computations support fast

serial order learning of the entire assembly sequence

including the manipulation of pipes initially located in

the operator’s workspace [55]. The learning is guided

by the information provided by the vision system about

the length and the hue value in color space coordinates

of each pipe. The combined feature information allows

the robot to distinguish the different pipes. For sim-

plicity, the three possible pipe lengths are labeled in

the following as short, medium and long, respectively.

Following the learning by demonstration phase, the

robot demonstrates the acquired task knowledge by

assisting the human operator in the assembly work. To

support fluency of joint task executing, the robot has
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Fig. 5: Schematic view of the DNF model with sev-

eral interconnected fields implementing sequence learn-

ing and sequence planning.

to plan and initiate the handover of a particular pipe

in anticipation of the worker’s need.

For the experiment, we used the collaborative robot

Sawyer designed by the company “Rethink Robotics”.

It is featured by a 7 degrees of freedom robot arm

with 1.26 meters reach that operates in work cells

defined for humans. The “head” mounted on top

consists of a LCD display and a camera system. An

additional camera system is mounted on the arm. We

used the head camera to provide the information about

length and color at the moment when the “giver” has

transported the pipe to the exchange position and

the “receiver” touches it. During joint task execution,

the reach-grasp-transport trajectory of the robot arm

to a pre-defined exchange position is generated using

the “HUMP” planner developed by our group [53].

It guarantees human-like features of the robot arm

movements.

3.1.1 Model architecture

Figure 5 presents a sketch of the DNF model im-

plemented as part of the control architecture of the

robot Sawyer. It consists of several interconnected two-

dimensional fields spanned over the input dimensions

(x, y) = (length, color).

The model generalizes an earlier one-dimensional se-

quence learning model which we have applied to teach a

robot by demonstration a color-coded musical sequence

[23]. From a computational perspective, the important

innovation is that the neural integrator simplifies the

processing and storage of serial information. No addi-

tional neural mechanisms (e.g., a threshold accommo-

dation dynamics used in [23]) have to be applied to

account for stable bumps with varying amplitudes.

The perceptual field uper, governed by the Amari equa-

tion (1) with kernel (2), receives a two-dimensional

Gaussian input representing the length-color combina-

tion of a specific pipe that the vision system detects

at the exchange position. The neural dynamics in the

sequence memory layer is governed by the coupled neu-

ral integrator equations, um and vm, given by (6) with

kernel (3). The um-population receives two types of ex-

citatory input (solid lines):

I(x, y, t) = uper(x, y, t)f(uper(x, y, t))+Icf(um(x, y, t)).

(12)

The first term on the right side describes the input from

the perceptual field at position (x, y) where sensory in-

formation has triggered the evolution of a suprathresh-

old activity pattern. Through inhibitory feedback con-

nections (dashed line), the bump in uper becomes desta-

bilized (and the input disappears) once a memory bump

in (um, vm) has been established at the corresponding

position. The second term describes a constant input Ic
to all neurons in um, which is defined by the summed

suprathreshold activation in the “sequence onset” field

uon:

Ic = κ

∫
{x:uon(x)≥0}

f(uon(x))dx, (13)
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Fig. 6: Snapshots of the sequence demonstration (a and c) and corresponding bump formation in the memory field

um spanned over the dimensions color and length (b and d).

where κ > 0 defines the input strength.

A bump in this one-dimensional field represents the

memory of an additional color cue that signals to the

robot the onset of the sequence demonstration. Due to

the multiplicative gating by the suprathreshold activ-

ity, f(um), the integration of the constant input, Ic,

manifests only at sites where the transient input from

uper has already driven the evolution of a bump. As a

consequence, the earlier a certain pipe has been manip-

ulated during demonstration, the higher is its memory

bump. An activation gradient established in (um, vm)

thus encodes serial order. Gradient-based modeling ap-

proaches to serial order are known in the literature as

competitive cuing or ordinal models [49]. The integra-

tion of the constant input stops when a second color cue

(not shown), signaling the end of the sequence demon-

stration, destabilizes the bump in uon.

During joint execution of the assembly task, the choice

which pipe to manipulate next is made in the decision

field ud governed by the Amari equation (1) with kernel

(2). It receives the stationary activation gradient of um

as subthreshold, excitatory input:

I(x, y) = um(x, y). (14)

The planning and execution of the whole sequence

starts with the sequence onset signal. It triggers the

continuous increase of the baseline activity hd. A sim-

ple linear dynamics is used with a time scale τd = 1/κ

controlled by the strength parameter κ > 0:

τd
dhd(t)

dt
=

∫
{x:uon(x)≥0}

f(uon(x))dx, hd(t0) = hd0 < 0.
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(15)

The subpopulation of ud with highest pre-activation

reaches the threshold for creating a bump first. The

moment of reaching the threshold is used to trigger the

reach-to-grasp movement towards the specific pipe. The

bump is destabilized by inhibitory input (dashed line)

from a bump in the working memory field uwm which

is initially driven by visual input. This input indicates

that the hand of the human worker has reached the

exchange position to receive the pipe. Subsequently,

the neural representation of the next pipe to be ma-

nipulated by the robot becomes active in ud. This au-

tonomous planning process continues until the mem-

ory representation of the last pipe with the lowest pre-

activation has been processed.

To enable stable multi-bump solutions in the working

memory field uwm governed by the two-dimensional

Amari equation (1), an oscillatory connectivity func-

tion [24, 36] is used:

wosc(r) = Aosce
−b|r|(b sin |r|+ cos r), (16)

where Aosc controls the amplitude and b > 0 the rate

at which the oscillations decay with distance.

3.1.2 Results - sequence learning and planning

The robot Sawyer watches the human assistant handing

over 4 pipes to the worker in the following order: pink-

medium → orange-medium → orange-short → dark-

blue-long. Figure 6 shows two snapshots at the begin-

ning and the end of the demonstration together with

the corresponding activity patterns in the sequence

memory field. At time t = 15sec a single bump has

evolved representing the pink-medium pipe. Immedi-

ately after the transfer of the dark-blue-long pipe, at

time t = 57sec, all 4 pipes are represented in memory

with bump amplitudes reflecting serial order. Figure 7

depicts the time course of the sequential bump forma-

tion relative to sequence onset at time t = 0.

During joint task execution together with the human

operator, Sawyer takes the role of the giver. Figure 8a

depicts the temporal evolution of suprathreshold activ-

ity of the subpopulations in the decision field ud repre-

senting motor plans directed towards the different pipes

(solid lines). The field dynamics activates the individual

handovers in the correct serial order. The suprathresh-

old activity of each subpopulation decays back to rest-

ing state due to the inhibition from bumps evolving at

corresponding sites in the working memory field uwm

(dashed lines). The video snapshot (Fig. 8b) taken at

time t = 86sec shows the worker mounting a pipe that

she had picked from her workspace. By comparing the

Fig. 7: Temporal evolution of population activities in

the memory field um during sequence demonstration.

The start and stop signals are presented at times t = 0

and t = 80sec, respectively.

population activity in the decision field at the same

time (Fig. 8c), it becomes clear that Sawyer already

starts the handover of the dark-blue-long pipe that the

worker has to assemble next. Note that the duration

of the whole sequence during joint execution is signifi-

cantly longer than during demonstration (compare Fig.

7) since the operator assembles additional pipes located

within reach on her side.

As shown in Figure 9, the robot is able to accelerate

the planning of the entire transfer sequence to adapt to

an operator executing the assembly steps with higher

speed. This acceleration can be achieved by applying

an additional input to the decision field. It may for in-

stance represent a request gesture signaling to the robot

that the operator awaits the next pipe [19]. The addi-

tional input either increases the baseline activity hd0
or

the slope of the linear ramp-to-threshold dynamics (15).

Since in modern assembly manufacturing the ordering

of activities is often left to the discretion of the opera-

tor, the robot should also be able to adapt to changes in

serial order of task execution [62]. The activation-based

learning implemented in the DNF model ensures that

a single task demonstration is sufficient to establish an

activation gradient representing the new order. How-

ever, to memorize simultaneously the order preferences

of different operators, activation gradients in separate

memory fields have to be established (for a DNF rep-

resentation of different serial orders in a single memory

field see [55]). During joint task execution, the read-out

of the correct memory representation can be ensured,

in principle, by a multiplicative gating of the different

memory inputs (defined by (14)) to the decision field

ud with a user-specific sensory signal. Only the memory

pattern which gets this additional support preshapes ud

and consequently affects sequence planning.
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Fig. 8: (a) Comparison of the temporal evolution of population activities in the decision field ud (solid line) and

the working memory field uwm (dashed line). The start and stop signals are presented at t = 0 and t = 110sec,

respectively . (b) The worker is still mounting a pipe while Sawyer is already grasping the next one. (c) Bump

formation in the decision field ud, and (d) multi-bump pattern in the working memory field uwm at time t = 86sec.

3.2 Value-based decision making in a material

handling task

The second experiment is inspired by challenges for ma-

terial handling robots in more flexible and therefore less

predictable manufacturing processes [13]. Such robots

play a central role in industrial assembly lines by trans-

porting parts or subassembly parts between worksta-

tions. Figure 10a shows a top view of a simulated en-

vironment in which a mobile robot equipped with a

forklift has to pick up a bulky object positioned on a

pallet to deliver it to an operator located in an upload-

ing area. For future real-world tests, it is interesting to

notice that the DNF approach to cognition is highly

compatible with the attractor dynamics approach to

autonomous navigation of mobile robots [4] (see the

Discussion). Recently, the approach has been success-

fully tested in a factory environment cluttered with sta-

tionary and moving obstacles [43, 42].

For the material handling task, the main challenge for

the robot is to deal with an environment characterized

by uncertainty. The searched object may arrive in a cer-

tain time interval ΔT with independent probabilities at

two possible locations, A and B, which are hidden from

the robot’s camera view. To maximize the success rate

of the object search over a longer time period, the robot

has to adapt its choice behavior to the statistics of the

environment.

We assume that during the duration T of the experi-

ment, the robot is forced to make every ΔT time units

a decision to search at A or B, and then deliver the

object at the upload area, or, in case of no success, re-

turn directly to the park position. For the evaluation of

the robot performance thus exist N = T/ΔT trials. For

simplicity, we further assume the existence of an exter-

nal computer clock to trigger the start of each decision

process. Note that the neural integrator model (6) may

be used as well to autonomously measure and reproduce

time intervals [64]. We leave this interesting issue for fu-

ture work (see the Discussion). Since the probabilities
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Fig. 9: Comparison of temporal evolution of population

activities in the decision field ud (solid line) and the

working memory field uwm (dashed line) for a faster

sequence planning and execution. The start and stop

signals are presented at times t = 0 and t = 100sec,

respectively.

of finding the specific object at the two locations are

independent, in each trial, both locations, only one of

the locations or none of the locations guarantee success.

Once the object has arrived at a particular location it

stays there until the robot picks it up.

3.2.1 Model architecture

The DNF model guiding the robot’s decisions is in-

spired by findings in neurophysiological and behavioral

studies investigating choice behavior in conceptually

similar tasks with humans and other animals [37, 56].

They suggest that it is necessary to integrate in the

decision process both past choices and past successes

in order to capture an optimal probabilistic strategy

in stationary as well as dynamically changing environ-

ments.

Figure 11 depicts the model architecture with three

coupled fields spanned over the behavioral dimension

“movement direction”. Bumps in the decision field ud

at locations encoding target A to the left or target B to

the right of the start position drive the activation of two

neural integrators (ur, vr) and (uc, vc). They represent,

respectively, cumulative success and cumulative choice

for each of the options. The input to the uc-population

is given by

Ic(x, t) =

∫
Ω

wlat(x− y)f(ud(y, t)− θ)dy, (17)

whereas the ur-population receives the input

Ir(x, t) = Krf(ud(x, t)− θ)R(x), (18)

where Kr > 0 is a scaling factor. The integration of

suprathreshold activation in ud is gated by a function

R(x) which indicates whether the robot’s camera has

detected the color-coded object or not, that is, R(x) = 1

if the object is found and R(x) = 0 if not.

The decision field ud receives in trial n the summed

activation of the two success integration fields at the

end of trial n − 1, urn−1
+ vrn−1

, as excitatory input

whereas the summed activation of the two choice inte-

gration fields, ucn−1+vcn−1 , is taken as inhibitory input:

Id(x, t) =
(
urn−1

(x) + vrn−1
(x)

)
− cd

(
ucn−1(x) + vcn−1(x)

)
,

(19)

where cd > 0 is a scaling parameter. The different in-

put signs may be understood by the fact that the simple

strategy to always choose the target with higher success

probability will not maximize the overall success rate.

Due to the persistence of the object at the target loca-

tion, the likelihood to find the object at the less likely

location increases with the time elapsed from the last

choices. The robot should thus visit from time to time

also this location. The net effect of the inputs to ud at

the beginning of each trial is a preshaping of the neural

subpopulations encoding locations A and B. It sets on

a trial-by-trial basis the initial condition for the bump

formation which is initiated by the ramp-to-threshold

dynamics (15). An open question is how many past tri-

als should inform the current decision. The issue of the

integration timescale is particularly relevant for envi-

ronments in which the value (success frequency) of each

option may change without warning [31]. Following the

discussion in [56], we address this issue by resetting the

activation pattern of the integrators to their initial val-

ues after a fixed number of Nre = 8 trials.

3.2.2 Results - value-based decision making

In the first simulation experiment, we assume that the

mobile robot knows the true success probability of each

option either through learning in a stationary environ-

ment or by instruction. Under this condition, matching

behavior is known to represent the optimal strategy for

maximizing the overall success [37, 56]. The “matching

law” states that an agent allocates choices in a propor-

tion that matches the relative success experienced on

these choices. For the present two-choice search task,

this translates to Ni/(NA +NB) = Si/(SA + SB), i =

A,B, where Ni represents the number of times loca-

tion i has been chosen and Si the number of times the

robot has found the object at that location. The prior

task knowledge is modeled as additional Gaussian in-

puts to the subpopulations representing directions A

and B with strengths proportional to the success prob-
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Fig. 10: (a) Top-view of a simulated factory environment with a park position for the mobile robot, two target

locations A and B, and an uploading area. (b) Robot at the moment of making a decision to search the object at

location A (left side) or location B (right side). (c) Robot finds the object at location A (left) to pick it up and

deliver it at the uploading area.

abilities [20]:

Iprob(x) = APA
e(−(x−xPA

)2/2σ2
P )

+APB
e(−(x−xPB

)2/2σ2
P ),

(20)

where 0 < APA
< 1 and 0 < APB

< 1.

The decision process in the first trial thus starts from

a two-peak, bimodal resting state shown in Figure 12.

Figure 13 illustrates the decision process in four succes-

sive trials in which the prior probabilities are 30% and

40% for target A and target B, respectively. The activ-

ity patterns in ud at the start (top) and the end of each

trial (middle) together with the pattern in uc at the end

of the trial (bottom) are shown. The decision in the first

trial reflects the prior information that the location B

has higher success probability. In the second trial, the

robot decides to go again to B despite the fact that the

prior decision was unsuccessful and the inhibition from

the bump in uc has reduced the preshape at position

B. The decision is again unsuccessful. In the third trial,

the robot changes its decision and finds the object at

A. The switch is due to the further increased inhibition

from the pattern in uc reflecting two B choices. In the

fourth trial, the robot moves again to A due to the ex-

citation from ur, reflecting the success in the last trial

(not shown), and the relatively smaller inhibition from

uc at A compared to B. Table 1 summarizes the re-

sults of eight successive trials with the choice pattern

(B,B,A,A,B,B,A,B). It shows that in the fourth trial no

object was available and in three trials with an object

available at A the wrong decision was made. To system-

atically analyze the search efficiency of the robot and
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Fig. 11: Model architecture consisting of a decision field

ud, a choice and a success integration field, (uc, vc)

and (ur, vr), respectively. Solid arrows indicate excita-

tory and dashed arrows inhibitory connections between

fields.

Fig. 12: Initial state of the decision field ud at the be-

ginning of trial n = 1 which is shaped by the prior

knowledge about the success probabilities for A and B

given by (20) with APA
= 0.3, APB

= 0.7, σP = 0.75.

trial no.
available objects

decision success
left right

1 1 0 right no
2 1 0 right no
3 1 0 left yes
4 0 0 left no
5 0 1 right yes
6 1 0 right no
7 1 1 left yes
8 0 1 right yes

Table 1: Availability of objects in locations A and B,

robot’s decisions and decision outcomes in a series of 8

successive trials. The success probabilities for A and B

are 30% and 40%, respectively.

compare it with the efficiency of two alternative search

strategies, we run blocks of N = 1000 trials with differ-

ent probability ratios for locations A and B. Search ef-

ficiency is defined as the total success achieved divided

by the number of available objects. The simple alter-

native strategies are (1) to go always to the location

with higher success probability, which we call the “Most

Likely” (ML) strategy, and (2) to stay at the option if

successful and change the option if not, known in the

literature as “Win-Stay-Lose-Switch” (WSLS) strategy.

The results in Table 2 show that for all tested ratios,

the DNF model outperforms the two alternative strate-

gies. The difference in search efficiency is in particular

evident for cases in which both targets have similar but

relatively low success probabilities (e.g., 30/40). More-

over, the distribution of choices among the two alterna-

tives generated by the DNF model closely matches the

success ratio.

In a second experiment, we tested the situation in

which the robot searches the object at A and B with-

out prior knowledge about the success probability at

each location. In addition, the probabilities change af-

ter N = 100 trials without warning and the robot has

to adjust the distribution of decisions among the alter-

natives to this new situation to guarantee a high search

efficiency. The first decision process in ud now starts

from equally pre-activated populations representing the

possible movement directions A and B (compare Fig.

12). Figure 14a shows the activity distribution in ud at

the beginning of trial 16 in a block in which the prob-

abilities for A and B are 30% and 40%, respectively.

The activity pattern is shaped by the summed activa-

tions of the choice and success integrators, uc+vc (Fig.

14b) and ur + vr (Fig. 14c), respectively. The preshape

pattern predicts the decision to go to target B. Figure

14 (bottom row) depicts the same activation snapshots

after trial 110 which is part of a block in which the suc-

cess probabilities have changed (at trial 100) to 60%

for A and 20% for B. Now the preshape pattern in ud

predicts location A as current choice. Figure 15 com-

pares for both blocks of N = 100 trials the cumulative

choices of target A and target B (blue curve) with the

average ratio of success. Two features of the robot’s be-

havior are notable. First, the robot appears to adjust

quite quickly its decisions to the unsigned change in

success probabilities. Second, the robot chooses the lo-

cation with lower probability more often than expected

if it knew the true success probabilities, a well-known

phenomenon described in the Cognitive Science litera-

ture as undermatching [31, 37]. Importantly, however,

the robot shows a high search efficiency in both blocks

with 85.7% and 73.8%, respectively. Again, the DNF

model outperforms the two alternative strategies (com-
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success probability
(left/right)

choice ratio
(left/right)

success ratio
(left/right)

search efficiency
(DNF model)

search efficiency
(ML strategy)

search efficiency
(WSLS strategy)

30/70 24.0/76.0 23.5/76.5 76.5% 70.0% 64.7%
30/40 40.1/59.9 40.1/59.9 79.0% 57.1% 67.1%
60/70 43.2/56.8 42.4/57.6 65.9% 53.9% 55.4%
50/20 73.2/26.8 74.4/25.6 82.3% 71.4% 70.6%
30/30 49.7/50.3 49.8/50.2 81.0% 50.0% 69.7%

Table 2: The performance of the DNF model is compared with the performances of the ML and WSLS strategies

in five blocks with different probability ratios for the two locations.

Fig. 13: Snapshots of the simulator illustrating the robot’s decisions in the first 4 trials of the experiment. For

details see the text and Table 1.

pare Table 3).

In the present study, the two integrators were reset to

their initial values every 8 trials. Intuitively it is clear

that the integration time which maximizes the success



A neural integrator model for planning and value-based decision making of a robotics assistant 15

block
success probability

(left/right)
choice ratio
(left/right)

success ratio
(left/right)

search efficiency
(DNF model)

search efficiency
(ML strategy)

search efficiency
(WSLS strategy)

1 30/40 47.0/53.0 41.7/58.3 85.7 % 57.1 % 71.4%
2 60/20 58.0/42.0 71.2/28.8 73.8 % 25.0 % 66.2%

Table 3: The performance of the DNF model is compared with the performances of the ML and WSLS strategies

in a dynamic environment with two blocks with different probability ratios for the two locations. The change in

the probabilities after N = 100 trials is not signaled to the robot. For the ML strategy, we assume that the robot

still believes in the second block that location B is the more likely one.

Fig. 14: (a-c) First block of trials with 30% and 40% success probability for A and B, respectively. The resting

state at the beginning of trial 16 is shown in the decision field ud (a) which is shaped by the inputs from the choice

integrator (b) and the success integrator (c). (d-f) Second block of trials with 60% and 20% success probability

for A and B, respectively. The resting state at the beginning of trial 110 in shown in the decision field ud (d) which

is shaped by the inputs from the choice integrator (e) and the success integrator (f).

rate for a given time period depends on the statistics of

the environment. Under relatively stable conditions, it

is better to take into account a large number of past

choices and successes to estimate the current values

of competing options. This is equivalent to introduc-

ing a constant prior belief in the model like shown in

Figure 12. In nonstationary environments, however, the

robot should weight recent events more heavily, as old

ones may not be informative anymore for the current

choice. The question how the neural integrators might

autonomously adapt the integration time window to op-

timize search efficiency is a current research topic [31]

but goes beyond the scope of this paper. It is interesting

to notice however that the neural activations represent-

ing both options in (uc, vc) might be used to “count”

the total number of past choices since the last reset. All

one has to assume is that the reset mechanism is trig-

gered when the total activation in the choice integration

field reaches a pre-defined read-out threshold.

4 Discussion

In this study, we tested neuro-computational process-

ing principles that support natural and efficient human-

robot cooperation by endowing the robot with true au-

tonomy in planning and decision making. The two test

scenarios are taken from modern manufacturing and as-

sembly environments that are characterized by a high

variability in the built process. To provide a produc-

tivity benefit, a robotic assistant should be able to effi-

ciently acquire and adapt knowledge about the order of

activities and workflow and to make decisions in partly

unknown environments.

The DNF approach is consistent with the hypothesis

that computational principles supporting the flexible

control of cognitive behaviors may be understood from

a dynamical systems perspective [48, 51]. Computations

determined by strong recurrent interactions between

neurons can be rapidly reconfigured without any change
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Fig. 15: Dynamic matching behavior. The blue curve

indicates the cumulative choices of target A and target

B. The black lines represent the average ratio of success

(B/A) within each of the two blocks of N = 100 trials:

B/A = 40/30 in the 1st block and 20/60 in the 2nd

block. Search efficiency: 85.7% (1st block) and 73.8%

(2nd block).

in the network structure by controlling the system’s in-

puts and initial conditions. In the two test scenarios,

the robot’s decision process is modeled in the field ud

as a transition from a stable resting state to a bump at-

tractor. The resting state appears to be preshaped by

inputs from connected populations that represent mem-

orized sensory information about serial order of object

transfers or the accumulated evidence about the choice

and success history of competing target locations. For

the DNF framework, the main novelty is that stable

bump solutions of the two-field model support a con-

tinuous temporal integration of sensory and other evi-

dence. There is no need to refer to additional process-

ing mechanisms that are specifically designed to model

stable bumps with a range of possible amplitudes (e.g.,

[20, 23, 33]).

Our neurodynamics approach with brain-like represen-

tations differs fundamentally from more traditional AI

approaches to human-robot cooperation that use logic-

based knowledge representations operating on high-

level symbols. Their abstract meaning is easy for hu-

mans to understand which favors human-robot inter-

actions based on spoken commands [1]. A more intu-

itive interaction with a human operator can be achieved

in principle by enriching the robot’s knowledge base

with heuristics and preferences (formulated as produc-

tion rules) that humans use in a specific task. A con-

trol architecture based on SOAR is a modern exam-

ple which pursues this paradigm [44]. The main draw-

back of the approach based on static symbols is that

the representations and task rules have to be hand-

crafted by a human expert since the robot is not able

to self-generate internal representations. Having the hu-

man programmer in the loop to cope with dynamically

changing task conditions of a modern manufacturing

environment represents an often intractable burden. In

the DNF approach, the fields are spanned over dimen-

sions that a human operator may identify as being task

relevant. The multi-bump pattern in um is not only able

to represent all possible combinations of sensed object

features in the continuous color-size space but also au-

tomatically adapts to different orders and lengths (in-

cluding repeated items, [23]) of demonstrated handover

or other object manipulation sequences. The computa-

tional principles guiding the trial-by-trial target selec-

tion in the decision field spanned over movement direc-

tion can be easily extended to more than two competing

targets and additional input factors that may bias the

decision process (e.g., travel effort/time).

The presented computational principles and results

may be used to address several key challenges that

have been identified for close human-robot collabora-

tive work in manufacturing environments [40, 58]. First,

preferences about task completion are prone to change

since the order of activities in many manual processes

are left to the discretion of the human operators [62]. As

already discussed before, the learning by demonstration

paradigm can be in principle applied to quickly teach

different serial orders represented by activation gradi-

ents in separate dynamic fields. In a recent robotics

experiment [55], we have used the spontaneous recall of

different gradient-based sequence memories as input to

a recurrent neural network (RNN). It slowly and grad-

ually established through weight-based learning long-

term associations between neural representations of dif-

ferent assembly steps. The ultimate goal was to extract

generalized task knowledge from user demonstrations

which includes the possibility to follow multiple serial

orders to achieve a desired end-state and the learning of

causal relationships between assembly steps (e.g., steps

1 to 4 have to be finished in arbitrary order before step

5 can be executed). The spontaneous recall of serial

order memory during off-line periods, which the self-

stabilizing properties of the neural field representations

support, is of great practical importance for robot learn-

ing since human tutors cannot be expected to demon-

strate the task execution many times.

As shown in Figs. 6 and 8, the one-shot learning of serial

order allows the robot to act in advance of the opera-

tor’s need, rather than just reacting to a request. For

efficient and successful joint action it is highly desirable

that an assistant shows such a proactive attitude also

when the operator makes an error [40]. To avoid time

consuming disassembly steps, the robot should be able

to detect and communicate errors before they manifest
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in the construction work (a capacity termed proactive

resilience in engineered industrial systems [59]). In pre-

vious research, we have developed a control architecture

for natural HRI based on the DNF framework. It im-

plements a highly context-sensitive mapping of an ob-

served action of the co-worker onto an adequate com-

plementary robot behavior. This mapping takes into

account different task-related and user-related factors

including an error monitoring capacity [6, 8, 54]. Neu-

ral populations encode in their suprathreshold activity

a mismatch between which assembly step the operator

should execute (shared task knowledge) and the pre-

dicted assembly step inferred from the observed motor

behavior. For the pipe assembly paradigm, assuming

that the robot has learned the serial order of the entire

assembly sequence, it may detect a serial order error at

the moment when the operator grasps a specific pipe.

An adequate complementary robot behavior would be

to inform the operator verbally or with a communica-

tive gesture about the error [5].

Ideally, the robot should be able to inform the opera-

tor even before she has started to grasps the pipe. In

many circumstances, humans are able to infer the mo-

tor intention of ongoing goal-directed movements solely

based on the observed kinematics of arm and hand [65].

We are currently exploring the application of Deep Neu-

ral Networks (DNNs) [38] as a data driven approach to

human action recognition and understanding in a man-

ufacturing environment. The central concept behind all

deep learning methodology is the automated discovery

of a hierarchy of features or representations that reflect

the semantic content of raw sensory data on different

levels of abstraction. These representations may then

be used to implement hierarchical processes that pre-

dict sensory events. Recent experiments show that DNN

architectures may outperform humans in such complex

classification tasks like predicting different final inten-

tions of the same class of grasping movements (e.g.,

grasping for placing or grasping for passing a certain

object, [65]). For typical HRI applications, the type of

the part or the tool the operator is going to manipulate

may help the intention classification (e.g., grasping a

screw driver [60]).

While there is a growing interest in using deep learning

in robotics, there are currently still only few robotics

applications that exploit the function approximation

capacity of deep networks to mediate the learning, stor-

age and interpolation of input representations to pre-

dict the value of states and actions. One reason for this

situation is that, in practice, deep architectures require

a huge amount of (often labeled) training data which

is quite expensive to collect with physical robots (for

review see [57]). Even if simulated data is used in part

to substitute the real-world experiments, the amount of

training time is usually huge when trying to optimize

the large amount of network parameters involved. We

see the dynamic field approach together with a learning

by demonstration paradigm as a highly attractive com-

promise for HRI in an industrial environment. It lies

on a spectrum along which the relative and comple-

mentary contributions of programming and data vary.

On one end of the spectrum, classical AI focuses on rea-

soning with rules defined by experts, with little or no

adaptation and learning involved. On the other end of

the spectrum lies deep learning which replaces program-

ming by training of a network architecture (the train-

ing procedure itself is a programmed algorithm) with

the promise to find relevant representations automati-

cally. As shown in the two robotics examples, the DNF

approach relies on a limited number of computational

principles such as a memory function and a continuous

neural integrator based on persistent activity that are

built into the system. Importantly, these principles are

powerful and general enough to support highly efficient

learning of other related tasks. For instance, we have

recently shown that the build-up of an activation gra-

dient during task demonstration can be used to learn a

joint representation of the serial order and the timing

of perceptual and motor events. This allows a robot, in

principle, to predict temporal information online, a ca-

pacity that is missing in most current robotics systems

[25]. Teaching by demonstration is attractive since it

facilitates task specification by individuals without ex-

pertise in robot programming. Moreover, like a “good”

teacher in a social learning situation, an expert operator

may draw the attention of a learning robot to features

that guide sequence learning in an assembly paradigm

or may explicitly instruct the robot to take the accu-

mulated evidence from past choices and rewards into

account in its current search decision. In case that suf-

ficient data is available and adequate features are dif-

ficult to identify even for a human expert (like in the

example of reading intention from motion), deep learn-

ing techniques can be applied to automatically extract

low-dimensional features on which field representations

can be built.

The focus of the presented experiments was on show-

ing autonomous decision making of a robot guided by

past experiences. In dynamically changing manufactur-

ing environments populated by other agents, it is im-

portant that the robot also takes online sensory infor-

mation into account. A relevant example is a search

task in which a team of two mobile robots is looking for

specific objects as supply for a manufacturing process.

To guarantee an efficient team strategy, the decision

process of each robot should be biased by predicted
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movement targets of the other robot to prevent from

searching at the same location. This prediction could

be based on a trajectory extrapolation of the current

heading direction provided by the robot camera. The

predicted target location of the co-worker then acts as

additional inhibitory input to the target selection pro-

cess sketched in Fig. 11 (for a DNF implementation see

[18]).

In case that sensory information about potential target

locations distributed in a relatively large search area is

available, a two step decision process proposed for sen-

sory networks guiding the navigation of multiple mo-

bile agents could be beneficial [61]. First, a decision

is made to move to an area with the highest prob-

ability of finding a particular object (this probability

may change dynamically if other search robots are in-

volved). The neural integrator accumulates sensory and

past information leading to clusters of broad activity

distributions in direction space. The cluster with the

currently highest total activation will be selected as a

first target in a competitive decision process. Once the

robot has reached the target area, a refined search with

more localized representations of sensory and other ev-

idence can be performed. In both steps, the selected

target direction is used as input to a path planning

module driven by a non-linear attractor dynamics in

which targets are modeled as attractive and obstacles

as repulsive forces. The non-linear attractor approach

to autonomous navigation has been successfully tested

in highly dynamic industrial environments [42, 43].

In future work, we plan to exploit the neural computa-

tions of the integrator model in an existing DNF-based

architecture for fluent joint action in a shared task. The

challenge will be to smoothly integrate a series of ac-

tions serving an operator like in the present joint as-

sembly study with assembly work that the robot itself

performs. Since a tight synchronization of activities be-

tween robot and operator is often required to achieve a

shared goal [62], the robot should not only be able to

adapt to changing preferences for workflow but also to

flexibly time its goal-directed actions. We have recently

applied the neural integrator model to measure and re-

produce time intervals between sensory-motor events

[64]. As a key processing mechanism to achieve adap-

tive motor timing, a bump reflecting measured duration

in its amplitude affects either the resting state or the

slope of the ramp-to-threshold dynamics in the decision

field.

In conclusion, the experimental results support the no-

tion that the brain-like computations offered by the

DNF framework may lead the way to endow robots with

higher cognition necessary to autonomously operate

in dynamic environments. Persistent neural population

activity that DNF models explain has been linked to a

variety of fundamental cognitive processes like memory,

planning, decision making, timing and learning. The ca-

pacity of the neural integrator to continuously accumu-

late sensory and past information over time is of critical

importance to the organization of appropriate behavior

in human-robot collaborative work.

A Initial conditions and parameters

A.1 Initial conditions

A.1.1 Assembly task

For the model simulations, the initial conditions of the fields
governed by the Amari dynamics, uper, uon, uwm and ud are
defined by the inhibition parameter h. For the coupled two-
field model the initial conditions are given by:

um(x, y, 0) = −1, (21a)

vm(x, y, 0) = −0.25− um(x, y, 0). (21b)

A.1.2 Value-based decision making task

The initial condition of the decision field at the start of sim-
ulation trial n is given by:

udn(x, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Iprob(x)− hd0
if n = 1,

(
urn−1

(x) + vrn−1
(x)

)

− cd
(
ucn−1

(x) + vcn−1
(x)

)− hd0
,

otherwise.

(22)

The initial condition for the choice integration layer (uc, vc)
in the first trial and after each reset is given by

uc(x, 0) = −0.5, (23a)

vc(x, 0) = −uc(x, 0). (23b)

The initial condition for the success integration layer (ur, vr)
in the first trial and after each reset is given by

ur(x, 0) = −0.5, (24a)

vr(x, 0) = Iprob(x)− ur(x, 0). (24b)

A.2 Model parameters
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Perception field uper

τper 3
wlat Alat = 6, σlat = 0.65, glat = 2
It AI = 6, σI = 0.75, gI = 0

hper 1.5

Sequence onset field uon

τon 1
wmex Aex = 4, Ain = 2, σex = 1.5, σin = 2.5, gmex = 0.15
Ion AI = 1.25, σI = 1.5, gI = 0
hon 0.5

Memory field um, vm
τm 3

wmex Aex = 6, Ain = 3.5, σex = 1.5, σin = 2.25, gmex = 0
κ 0.04

Decision field ud

τd 2
wlat Alat = 5, σlat = 0.75, glat = 1.5

hd
hd0

= 13.5, κ = 0.0085 (fast recall),
κ = 0.004 (slower recall)

Working memory field uwm

τwm 2
wosc Aosc = 2.4, b = 0.7
hwm 2.5

Table 4: Parameter values of the field equations used

for sequence learning and planning.

Decision field ud

τd 1
wlat Alat = 2, σlat = 0.75, glat = 1

ε1/2 0.025
hd hd0

= 1, τhd
= 7

cd 0.05

Choice integration field uc, vc
τc 1

wmex Aex = 4, Ain = 2, σex = 1.5, σin = 3, gmex = 0.25

Success integration field ur, vr
τr 1

wmex Aex = 4, Ain = 2, σex = 1.5, σin = 3, gmex = 0.25
Kr Kr = 0.02 (static case), Kr = 0.035 (dynamic case)

Table 5: Parameter values of the field equations used

for value-based decision making.

A.3 Numerical model simulations

Numerical simulations of the model were done in MATLAB
using a forward Euler method with parameters given in Table
6. To compute the spatial convolution of w and f we employ
a fast Fourier transform (FFT), using MATLAB’s in-built
functions fft and ifft to perform the Fourier transform and
the inverse Fourier transform, respectively.
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space L = 50, N = 1000, dx = 2L/N = 0.1
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(eds) Artificial Neural Networks and Machine Learn-
ing – ICANN 2019: Theoretical Neural Computation,
Springer International Publishing, Cham, pp 327–338,
DOI 10.1007/978-3-030-30487-4\ 26

65. Zunino A, Cavazza J, Volpi R, Morerio P, Cavallo A,
Becchio C, Murino V (2020) Predicting intentions from
motion: The subject-adversarial adaptation approach. In-
ternational Journal of Computer Vision 128(1):220–239,
DOI 10.1007/s11263-019-01234-9


