3,557 research outputs found

    Keck Imaging of the Globular Cluster Systems in the Early--type Galaxies NGC 1052 and NGC 7332

    Full text link
    The presence of two globular cluster subpopulations in early-type galaxies is now the norm rather than the exception. Here we present two more examples for which the host galaxy appears to have undergone a recent merger. Using multi-colour Keck imaging of NGC 1052 and NGC 7332 we find evidence for a bimodal globular cluster colour distribution in both galaxies, with roughly equal numbers of blue and red globular clusters. The blue ones have similar colours to those in the Milky Way halo and are thus probably very old and metal-poor. If the red GC subpopulations are at least solar metallicity, then stellar population models indicate young ages. We discuss the origin of globular clusters within the framework of formation models. We conclude that recent merger events in these two galaxies have had little effect on their overall GC systems. We also derive globular cluster density profiles, global specific frequencies and in the case of NGC 1052, radial colour gradients and azimuthal distribution. In general these globular cluster properties are normal for early-type galaxies.Comment: 11 pages, Latex, 15 figures, 2 tables, accepted by MNRA

    The coadaptation of parental supply and offspring demand

    Get PDF

    Keck Spectroscopy of Two Young Globular Clusters in the Merger Remnant NGC 3921

    Full text link
    Low-resolution UV-to-visual spectra of two candidate globular clusters in the merger remnant NGC 3921 are presented. These two clusters of apparent magnitude V = 22.2 (Mv = -12.5) lie at projected distances of ~5 kpc from the center and move with halo-type radial velocities relative to the local galaxy background. Their spectra show strong Balmer absorption lines indicative of main-sequence turnoffs dominated by A-type stars. Comparisons with model-cluster spectra computed by Bruzual & Charlot and others yield cluster ages in the range of 200-530 Myr, and metallicities about solar to within a factor of three. Given their small half-light radii (Reff < 5 pc) and ages corresponding to ~100 core- crossing times, these clusters are gravitationally bound and, hence, indeed young globulars. Assuming that they had Chabrier-type initial mass functions, their estimated current masses are 2.3(+-0.1)x10^6 Msun and 1.5(+-0.1)x10^6 Msun, respectively, or roughly half the mass of omegaCen. Since NGC 3921 itself shows many signs of being a 0.7(+-0.3) Gyr old protoelliptical, these two young globulars of roughly solar metallicity and their many counterparts observed with the Hubble Space Telescope provide supporting evidence that, in the process of forming elliptical-like remnants, major mergers of gas-rich disks can also increase the number of metal-rich globular clusters. (Abridged)Comment: 22 pages, 6 figures, accepted for publication in AJ, July 200

    Surprisingly Little Population Genetic Structure In A Fungus-Associated Beetle Despite Its Exploitation Of Multiple Hosts

    Get PDF
    In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B.cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B.cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure

    Morphological Correlates Of A Combat Performance Trait In The Forked Fungus Beetle, Bolitotherus Cornutus

    Get PDF
    Combat traits are thought to have arisen due to intense male-male competition for access to females. While large and elaborate weapons used in attacking other males have often been the focus of sexual selection studies, defensive traits (both morphological and performance) have received less attention. However, if defensive traits help males restrict access to females, their role in the process of sexual selection could also be important. Here we examine the morphological correlates of grip strength, a defensive combat trait involved in mate guarding, in the tenebrionid beetle Bolitotherus cornutus. We found that grip strength was repeatable and differed between the sexes. However, these differences in performance were largely explained by body size and a non-additive interaction between size and leg length that differed between males and females. Our results suggest that leg size and body size interact as part of an integrated suite of defensive combat traits

    Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions

    Get PDF
    Neural respiratory drive, i.e., the activity of respiratory centres controlling breathing, is an overlooked physiologic variable which affects the pathophysiology and the clinical outcome of acute respiratory distress syndrome (ARDS). Spontaneous breathing may offer multiple physiologic benefits in these patients, including decreased need for sedation, preserved diaphragm activity and improved cardiovascular function. However, excessive effort to breathe due to high respiratory drive may lead to patient self-inflicted lung injury (P-SILI), even in the absence of mechanical ventilation. In the present review, we focus on the physiological and clinical implications of control of respiratory drive in ARDS patients. We summarize the main determinants of neural respiratory drive and the mechanisms involved in its potentiation, in health and ARDS. We also describe potential and pitfalls of the available bedside methods for drive assessment and explore classical and more \u201cfuturistic\u201d interventions to control drive in ARDS patients

    Group And Individual Social Network Metrics Are Robust To Changes In Resource Distribution In Experimental Populations Of Forked Fungus Beetles

    Get PDF
    1. Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions. 2. We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions. 3. We experimentally manipulated the distribution of an essential food and reproductive resource in semi-natural populations of forked fungus beetles Bolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half-way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments. 4. We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources. 5. Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions

    Mycophagous Beetle Females Do Not Behave Competitively During Intrasexual Interactions In Presence Of A Fungal Resource

    Get PDF
    Intrasexual interactions can determine which individuals within a population have access to limited resources. Despite their potential importance on fitness generally and mating success especially, female–female interactions are not often measured in the same species where male–male interactions are well-defined. In this study, we characterized female–female interactions in Bolitotherus cornutus, a mycophagous beetle species native to Northeastern North America. We used dyadic, behavioral assays to determine whether females perform directly aggressive or indirectly exclusionary competitive behaviors. Polypore shelf fungus, an important food and egg-laying resource for B. cornutus females, is patchily distributed and of variable quality, so we tested for competition over fungus as a resource. Behavior of females was assessed in three sets of dyadic trials with randomly paired female partners. Overall, females did not behave aggressively toward their female partner or perform exclusionary behaviors over the fungal resource. None of the behaviors performed by females were individually repeatable. Two scenarios may explain our lack of observed competition: our trial context may not induce competition, or female B. cornutus simply may not behave competitively in the wild. We compare our results to a similar study on male–male interactions in the same species and propose future studies on female–female interactions under different competitive contexts to expand the understanding of female competition

    Star cluster dynamics

    Full text link
    Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties which result from dynamical evolution from those imprinted at the time of cluster formation. In this review, we focus our attention on globular clusters and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.Comment: 20 pages, 2 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 7 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. LaTeX, requires rspublic.cls style fil
    • …
    corecore