73 research outputs found

    Wambiana Grazing Trial: Water Quality Update to Burdekin Dry Tropics NRM

    Get PDF
    Aside from the obvious issues of animal production, pasture condition and economic performance, a key issue in savanna management is that of soil loss and runoff. Increased sediment and nutrient inputs from grazing lands have been identified as major threats to the Great Barrier Reef (GBR) lagoon and water quality is obviously of major relevance to the grazing industry. However, an aspect usually given lesser prominence is that excessive loss of runoff and nutrients will inevitably compromise long term pasture and animal production. Previous studies conducted on grano-diorite and sedimentary landscapes in the Burdekin catchment showed that runoff and sediment loss increased sharply as cover declined (McIvor et al., 1995; Scanlan et al., 1996). However, neither study addressed the issue of nutrient loss from these systems. Furthermore, both studies were conducted on relatively small plots: under these conditions much of the sediment moved is likely to be redeposited before entering water ways, making it difficult to extrapolate sediment losses to larger catchment scales. Major knowledge gaps thus exist concerning the relationship between management and runoff in extensive grazing lands. These are firstly, how runoff and water quality are affected by grazing management on the relatively flat, infertile, tertiary sediments, which make up c. 20% of the Burdekin catchment. Secondly, how grazing management affects water quality. And thirdly, the extent (if any) of the trade-off between reduced soil loss and economic productivity in grazing management. To test the effects of grazing management on soil and nutrient loss, five 1 ha minicatchments were established in December 1997 under different grazing strategies on a sedimentary landscape near Charters Towers. The objectives of the trial are to: 1. Assess the relative ability of different grazing strategies to cope with rainfall variability in terms of their effects on animal production, economics and resource condition. 2. Develop new and practical sustainable management strategies based on seasonal climate forecasting to cope with present and future rainfall variability, and 3. Promote the adoption of these strategies through direct demonstration of the benefits of sustainable management

    Improving water quality in the wet tropics, Australia: a conceptual framework and case study

    Get PDF
    The Wet Tropics region of north Queensland contains the highest biological diversity in Australia, has outstanding environmental values, is economically important and located adjacent to the Great Barrier Reef (GBR). Increasing urban development and agricultural intensification in the Wet Tropics has raised serious water quality concerns. To successfully achieve water quality improvement outcomes, the integration of social and biophysical knowledge, in particular clarifying the roles and responsibilities of multiple stakeholders for knowledge integration, has been identified as a key issue and research priority. However, research into the processes supporting knowledge integration and clarifying roles and responsibilities of multiple stakeholders for improving water quality is largely lacking. To fill this gap, we further developed and advanced a social-ecological planning framework to improve our understanding of how multiple-stakeholders can contribute to successful water quality management outcomes. Our conceptual framework, applied in the Tully basin adjacent to the GBR: (1) provides a transdisciplinary approach; (2) enhances the integration of social and biophysical knowledge through tailored methods fitting the local context; (3) shares knowledge and provides recommendations; (4) outlines factors that may promote or inhibit the implementation of freshwater quality objectives; (5) highlights inadequacies of existing government guidelines, policies, and presents co-management opportunities and (6) offers a novel collaborative approach supporting water quality improvement in the Wet Tropics of Australia and beyond

    Fine-suspended sediment and water budgets for a large, seasonally dry tropical catchment: Burdekin River catchment, Queensland, Australia

    Get PDF
    The Burdekin River catchment (~130,400 km2) is a seasonally dry tropical catchment located in north-east Queensland, Australia. It is the single largest source of suspended sediment to the Great Barrier Reef (GBR). Fine sediments are a threat to ecosystems on the GBR where they contribute to elevated turbidity (reduced light), sedimentation stress, and potential impacts from the associated nutrients. Suspended sediment data collected over a 5 year period were used to construct a catchment-wide sediment source and transport budget. The Bowen River tributary was identified as the major source of end-of-river suspended sediment export, yielding an average of 530 t km−2 yr−1 during the study period. Sediment trapping within a large reservoir (1.86 million ML) and the preferential transport of clays and fine silts downstream of the structure were also examined. The data reveal that the highest clay and fine silt loads—which are of most interest to environmental managers of the GBR—are not always sourced from areas that yield the largest total suspended sediment load (i.e., all size fractions). Our results demonstrate the importance of incorporating particle size into catchment sediment budget studies undertaken to inform management decisions to reduce downstream turbidity and sedimentation. Our data on sediment source, reservoir influence, and subcatchment and catchment yields will improve understandings of sediment dynamics in other tropical catchments, particularly those located in seasonally wet-dry tropical savannah/semiarid climates. The influence of climatic variability (e.g., drought/wetter periods) on annual sediment loads within large seasonally dry tropical catchments is also demonstrated by our data

    Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: validation of a sequential extraction protocol

    Get PDF
    Ocean contamination by plastics is a global issue. Although ingestion of plastic debris by sea turtles has been widely documented, contamination by microplastics ( 100 μm. Two macroplastics and seven microplastics (two plastic paint chips and five synthetic fabric particles) were isolated from subsamples of two green turtles. Our results highlight the need for more research towards understanding the impact of microplastics on these threatened marine reptiles

    Land use change in the river basins of the Great Barrier Reef, 1860 to 2019: a foundation for understanding environmental history across the catchment to reef continuum

    Get PDF
    Land use in the catchments draining to the Great Barrier Reef lagoon has changed considerably since the introduction of livestock grazing, various crops, mining and urban development. Together these changes have resulted in increased pollutant loads and impaired coastal water quality. This study compiled records to produce annual time-series since 1860 of human population, livestock numbers and agricultural areas at the scale of surface drainage river basins, natural resource management regions and the whole Great Barrier Reef catchment area. Cattle and several crops have experienced progressive expansion interspersed by declines associated with droughts and diseases. Land uses which have experienced all time maxima since the year 2000 include cattle numbers and the areas of sugar cane, bananas and cotton. A Burdekin Basin case study shows that sediment loads initially increased with the introduction of livestock and mining, remained elevated with agricultural development, and declined slightly with the Burdekin Falls Dam construction

    Impact of catchment-derived nutrients and sediments on marine water quality on the Great Barrier Reef: an application of the eReefs marine modelling system

    Get PDF
    Water quality of the Great Barrier Reef (GBR) is determined by a range of natural and anthropogenic drivers that are resolved in the eReefs coupled hydrodynamic - biogeochemical marine model forced by a process-based catchment model, GBR Dynamic SedNet. Model simulations presented here quantify the impact of anthropogenic catchment loads of sediments and nutrients on a range of marine water quality variables. Simulations of 2011–2018 show that reduction of anthropogenic catchment loads results in improved water quality, especially within river plumes. Within the 16 resolved river plumes, anthropogenic loads increased chlorophyll concentration by 0.10 (0.02–0.25) mg Chl m−3. Reductions of anthropogenic loads following proposed Reef 2050 Water Quality Improvement Plan targets reduced chlorophyll concentration in the plumes by 0.04 (0.01–0.10) mg Chl m−3. Our simulations demonstrate the impact of anthropogenic loads on GBR water quality and quantify the benefits of improved catchment management

    Landscape-scale benefits of protected areas for tropical biodiversity

    Get PDF
    We are indebted to numerous local communities, PA and government agency staff, research assistants, and other partners for supporting the field data collection. Research permissions were granted by appropriate forestry and conservation government departments in each country. Special thanks is given to the Sarawak State Government, Sarawak Forestry Corporation, Forest Department Sarawak, Sabah Biodiversity Centre, the Danum Valley Management Committee, the Forest Research Institute Malaysia (FRIM), the Smithsonian Institute and the Tropical Ecology Assessment and Monitoring (TEAM) network, Sarayudh Bunyavejchewin, and Ronglarp Sukmasuang. Support was provided by the United Nations Development Programme, NASA grants NNL15AA03C and 80NSSC21K0189, National Geographic Society’s Committee for the Research and Exploration award #9384–13, the Australian Research Council Discovery Early Career Researcher Award DECRA #DE210101440, the Universiti Malaysia Sarawak, the Ministry of Higher Education Malaysia, Nanyang Technological University Singapore, the Darwin Initiative, Liebniz-IZW, and the Universities of Aberdeen, British Columbia, Montana, and Queensland.Peer reviewedPostprin

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Future Ocean Observations to Connect Climate, Fisheries and Marine Ecosystems

    Get PDF
    Advances in ocean observing technologies and modeling provide the capacity to revolutionize the management of living marine resources. While traditional fisheries management approaches like single-species stock assessments are still common, a global effort is underway to adopt ecosystem-based fisheries management (EBFM) approaches. These approaches consider changes in the physical environment and interactions between ecosystem elements, including human uses, holistically. For example, integrated ecosystem assessments aim to synthesize a suite of observations (physical, biological, socioeconomic) and modeling platforms [ocean circulation models, ecological models, short-term forecasts, management strategy evaluations (MSEs)] to assess the current status and recent and future trends of ecosystem components. This information provides guidance for better management strategies. A common thread in EBFM approaches is the need for high-quality observations of ocean conditions, at scales that resolve critical physical-biological processes and are timely for management needs. Here we explore options for a future observing system that meets the needs of EBFM by (i) identifying observing needs for different user groups, (ii) reviewing relevant datasets and existing technologies, (iii) showcasing regional case studies, and (iv) recommending observational approaches required to implement EBFM. We recommend linking ocean observing within the context of Global Ocean Observing System (GOOS) and other regional ocean observing efforts with fisheries observations, new forecasting methods, and capacity development, in a comprehensive ocean observing framework
    corecore