100 research outputs found
Surprisingly Little Population Genetic Structure In A Fungus-Associated Beetle Despite Its Exploitation Of Multiple Hosts
In heterogeneous environments, landscape features directly affect the structure of genetic variation among populations by functioning as barriers to gene flow. Resource-associated population genetic structure, in which populations that use different resources (e.g., host plants) are genetically distinct, is a well-studied example of how environmental heterogeneity structures populations. However, the pattern that emerges in a given landscape should depend on its particular combination of resources. If resources constitute barriers to gene flow, population differentiation should be lowest in homogeneous landscapes, and highest where resources exist in equal proportions. In this study, we tested whether host community diversity affects population genetic structure in a beetle (Bolitotherus cornutus) that exploits three sympatric host fungi. We collected B.cornutus from plots containing the three host fungi in different proportions and quantified population genetic structure in each plot using a panel of microsatellite loci. We found no relationship between host community diversity and population differentiation in this species; however, we also found no evidence of resource-associated differentiation, suggesting that host fungi are not substantial barriers to gene flow. Moreover, we detected no genetic differentiation among B.cornutus populations separated by several kilometers, even though a previous study demonstrated moderate genetic structure on the scale of a few hundred meters. Although we found no effect of community diversity on population genetic structure in this study, the role of host communities in the structuring of genetic variation in heterogeneous landscapes should be further explored in a species that exhibits resource-associated population genetic structure
Morphological Correlates Of A Combat Performance Trait In The Forked Fungus Beetle, Bolitotherus Cornutus
Combat traits are thought to have arisen due to intense male-male competition for access to females. While large and elaborate weapons used in attacking other males have often been the focus of sexual selection studies, defensive traits (both morphological and performance) have received less attention. However, if defensive traits help males restrict access to females, their role in the process of sexual selection could also be important. Here we examine the morphological correlates of grip strength, a defensive combat trait involved in mate guarding, in the tenebrionid beetle Bolitotherus cornutus. We found that grip strength was repeatable and differed between the sexes. However, these differences in performance were largely explained by body size and a non-additive interaction between size and leg length that differed between males and females. Our results suggest that leg size and body size interact as part of an integrated suite of defensive combat traits
Mycophagous Beetle Females Do Not Behave Competitively During Intrasexual Interactions In Presence Of A Fungal Resource
Intrasexual interactions can determine which individuals within a population have access to limited resources. Despite their potential importance on fitness generally and mating success especially, female–female interactions are not often measured in the same species where male–male interactions are well-defined. In this study, we characterized female–female interactions in Bolitotherus cornutus, a mycophagous beetle species native to Northeastern North America. We used dyadic, behavioral assays to determine whether females perform directly aggressive or indirectly exclusionary competitive behaviors. Polypore shelf fungus, an important food and egg-laying resource for B. cornutus females, is patchily distributed and of variable quality, so we tested for competition over fungus as a resource. Behavior of females was assessed in three sets of dyadic trials with randomly paired female partners. Overall, females did not behave aggressively toward their female partner or perform exclusionary behaviors over the fungal resource. None of the behaviors performed by females were individually repeatable. Two scenarios may explain our lack of observed competition: our trial context may not induce competition, or female B. cornutus simply may not behave competitively in the wild. We compare our results to a similar study on male–male interactions in the same species and propose future studies on female–female interactions under different competitive contexts to expand the understanding of female competition
Group And Individual Social Network Metrics Are Robust To Changes In Resource Distribution In Experimental Populations Of Forked Fungus Beetles
1. Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions. 2. We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions. 3. We experimentally manipulated the distribution of an essential food and reproductive resource in semi-natural populations of forked fungus beetles Bolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half-way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments. 4. We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources. 5. Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions
Adaptive radiation along a deeply conserved genetic line of least resistance in \u3cem\u3eAnolis\u3c/em\u3e lizards
On microevolutionary timescales, adaptive evolution depends upon both natural selection and the underlying genetic architecture of traits under selection, which may constrain evolutionary outcomes. Whether such genetic constraints shape phenotypic diversity over macroevolutionary timescales is more controversial, however. One key prediction is that genetic constraints should bias the early stages of species divergence along “genetic lines of least resistance” defined by the genetic (co)variance matrix, G. This bias is expected to erode over time as species means and G matrices diverge, allowing phenotypes to evolve away from the major axis of variation. We tested for evidence of this signal in West Indian Anolis lizards, an iconic example of adaptive radiation. We found that the major axis of morphological evolution was well aligned with a major axis of genetic variance shared by all species despite separation times of 20–40 million years, suggesting that divergence occurred along a conserved genetic line of least resistance. Further, this signal persisted even as G itself evolved, apparently because the largest evolutionary changes in G were themselves aligned with the line of genetic least resistance. Our results demonstrate that the signature of genetic constraint may persist over much longer timescales than previously appreciated, even in the presence of evolving genetic architecture. This pattern may have arisen either because pervasive constraints have biased the course of adaptive evolution or because the G matrix itself has been shaped by selection to conform to the adaptive landscape
Recommended from our members
A Proposal to Sequence the Genome of a Garter Snake (Thamnophis sirtalis)
Here we develop an argument in support of sequencing a garter snake (Thamnophis sirtalis) genome, and outline a plan to accomplish this. This snake is a common, widespread, nonvenomous North American species that has served as a model for diverse studies in evolutionary biology, physiology, genomics, behavior and coevolution. The anole lizard is currently the only genome sequence available for a non-avian reptile. Thus, the garter snake at this time would be the first available snake genome sequence and as such would provide much needed comparative representation of non-avian reptilian genomes, and would also allow critical new insights for vertebrate comparative genomic studies. We outline the major areas of discovery that the availability of the garter snake genome would enable, and describe a plan for whole-genome sequencing.Organismic and Evolutionary Biolog
Disgusting or delicious? Predatory behavior of the hylid frog Phyllodytes luteolus on sympatric ants
Decoherence, einselection, and the quantum origins of the classical
Decoherence is caused by the interaction with the environment. Environment
monitors certain observables of the system, destroying interference between the
pointer states corresponding to their eigenvalues. This leads to
environment-induced superselection or einselection, a quantum process
associated with selective loss of information. Einselected pointer states are
stable. They can retain correlations with the rest of the Universe in spite of
the environment. Einselection enforces classicality by imposing an effective
ban on the vast majority of the Hilbert space, eliminating especially the
flagrantly non-local "Schr\"odinger cat" states. Classical structure of phase
space emerges from the quantum Hilbert space in the appropriate macroscopic
limit: Combination of einselection with dynamics leads to the idealizations of
a point and of a classical trajectory. In measurements, einselection replaces
quantum entanglement between the apparatus and the measured system with the
classical correlation.Comment: Final version of the review, with brutally compressed figures. Apart
from the changes introduced in the editorial process the text is identical
with that in the Rev. Mod. Phys. July issue. Also available from
http://www.vjquantuminfo.or
Recommended from our members
Evolutionary Biology for the 21st Century
We live in an exciting time for biology. Technological advances have made data collection easier and cheaper than we could ever have imagined just 10 years ago. We can now synthesize and analyze large data sets containing genomes, transcriptomes, proteomes, and multivariate phenotypes. At the same time, society's need for the results of biological research has never been greater. Solutions to many of the world's most pressing problems—feeding a global population, coping with climate change, preserving ecosystems and biodiversity, curing and preventing genetically based diseases—will rely heavily on biologists, collaborating across disciplines
- …