1,454 research outputs found

    Patch-Wise Training with Convolutional Neural Networks to Synthetically Upscale CFD Simulations

    Get PDF
    This paper expands the authors’ prior work[1], which focuses on developing a convolutional neural network (CNN) model capable of mapping time-averaged, unsteady Reynold’s-averaged Navier-Stokes (URANS) simulations to higher resolution results informed by time-averaged detached eddy simulations (DES). The authors present improvements over the prior CNN autoencoder model that result from hyperparameter optimization, increased data set augmentation through the adoption of a patch-wise training approach, and the predictions of primitive variables rather than vorticity magnitude. The training of the CNN model developed in this study uses the same URANS and DES simulations of a transonic flow around several NACA 4-digit airfoils at high angles of attack[1]. The authors test the updated model by inputting airfoil profiles and flow conditions outside of the training set and by comparing the output flow field against DES calculations. The Fully Unstructured Navier-Stokes 3D (FUN3D) solver from NACA generates the computational fluid dynamics (CFD) simulations and uses computing assets available from the Department of Defense High Performance Computing Modernization Program (HPCMP) and Old Dominion University (ODU) High Performance Computing (HPC). Finally, the paper includes the effects of these techniques on the predictive capability and the performance of the authors’ CNN model

    Experimental study of launched ion-acoustic waves in a plasma using continuous wave CO2 laser scattering

    Get PDF
    A study of coherent density fluctuations in a low density plasma using continuous wave CO/sub 2/ laser scattering diagnostics is reported. A simple and direct description of collective scattering theory from monochromatic electrostatic waves is presented. The diagnostic technique is described in detail and its performance is analyzed. Experimental results on externally launched ion-acoustic waves are presented and it is demonstrated that accurate measurements of certain plasma parameters are possibl

    First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li

    Full text link
    In this letter, we report a new mass for 11^{11}Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t1/2=8.8mst_{1/2} = 8.8 \rm{ms}, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of 8,9^{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of seven more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11^{11}Li. This result is a remarkable confluence of nuclear and atomic physics.Comment: Formatted for submission to PR

    First direct mass-measurement of the two-neutron halo nucleus 6He and improved mass for the four-neutron halo 8He

    Full text link
    The first direct mass-measurement of 6^{6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of 8^{8}He was determined with improved precision over our previous measurement. The obtained masses are mm(6^{6}He) = 6.018 885 883(57) u and mm(8^{8}He) = 8.033 934 44(11) u. The 6^{6}He value shows a deviation from the literature of 4σ\sigma. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) fm and 1.959(16) fm for 6^{6}He and 8^{8}He respectively. We present a detailed comparison to nuclear theory for 6^6He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.Comment: 4 pages, 2 figure

    Highly charged ions in Penning traps, a new tool for resolving low lying isomeric states

    Full text link
    The use of highly charged ions increases the precision and resolving power, in particular for short-lived species produced at on-line radio-isotope beam facilities, achievable with Penning trap mass spectrometers. This increase in resolving power provides a new and unique access to resolving low-lying long-lived (T1/2>50T_{1/2} > 50 ms) nuclear isomers. Recently, the 111.19(22)111.19(22) keV (determined from γ\gamma-ray spectroscopy) isomeric state in 78^{78}Rb has been resolved from the ground state, in a charge state of q=8+q=8+ with the TITAN Penning trap at the TRIUMF-ISAC facility. The excitation energy of the isomer was measured to be 108.7(6.4)108.7(6.4) keV above the ground state. The extracted masses for both the ground and isomeric states, and their difference, agree with the AME2003 and Nuclear Data Sheet values. This proof of principle measurement demonstrates the feasibility of using Penning trap mass spectrometers coupled to charge breeders to study nuclear isomers and opens a new route for isomer searches.Comment: 8 pages, 6 figure

    TriSol: a major upgrade of the TwinSol RNB facility

    Full text link
    We report here on the recent upgrade of the TwinSol radioactive nuclear beam (RNB) facility at the University of Notre Dame. The new TriSol system includes a magnetic dipole to provide a second beamline and a third solenoid which acts to reduce the size of the radioactive beam on target.Comment: submitted to Nuclear Instruments and Methods

    Dynamic Nonlinear X-waves for Femtosecond Pulse Propagation in Water

    Full text link
    Recent experiments on femtosecond pulses in water displayed long distance propagation analogous to that reported in air. We verify this phenomena numerically and show that the propagation is dynamic as opposed to self-guided. Furthermore, we demonstrate that the propagation can be interpreted as due to dynamic nonlinear X-waves whose robustness and role in long distance propagation is shown to follow from the interplay between nonlinearity and chromatic dispersion.Comment: 4 page

    Juvenile salmonid distribution, growth, condition, origin, and environmental and species associations in the Northern California Current

    Get PDF
    Information is summarized on juvenile salmonid distribution, size, condition, growth, stock origin, and species and environmental associations from June and August 2000 GLOBEC cruises with particular emphasis on differences related to the regions north and south of Cape Blanco off Southern Oregon. Juvenile salmon were more abundant during the August cruise as compared to the June cruise and were mainly distributed northward from Cape Blanco. There were distinct differences in distribution patterns between salmon species: chinook salmon were found close inshore in cooler water all along the coast and coho salmon were rarely found south of Cape Blanco. Distance offshore and temperature were the dominant explanatory variables related to coho and chinook salmon distribution. The nekton assemblages differed significantly between cruises. The June cruise was dominated by juvenile rockfishes, rex sole, and sablefish, which were almost completely absent in August. The forage fish community during June comprised Pacific herring and whitebait smelt north of Cape Blanco and surf smelt south of Cape Blanco. The fish community in August was dominated by Pacific sardines and highly migratory pelagic species. Estimated growth rates of juvenile coho salmon were higher in the GLOBEC study area than in areas farther north. An unusually high percentage of coho salmon in the study area were precocious males. Significant differences in growth and condition of juvenile coho salmon indicated different oceanographic environments north and south of Cape Blanco. The condition index was higher in juvenile coho salmon to the north but no significant differences were found for yearling chinook salmon. Genetic mixed stock analysis indicated that during June, most of the Chinook salmon in our sample originated from rivers along the central coast of Oregon. In August, chinook salmon sampled south of Cape Blanco were largely from southern Oregon and northern California; whereas most chinook salmon north of Cape Blanco were from the Central Valley in California

    A novel nanomicellar combination of fenretinide and lenalidomide shows marked antitumor activity in a neuroblastoma xenograft model

    Get PDF
    Purpose: Currently >50% of high-risk neuroblastoma (NB) patients, despite intensive therapy and initial partial or complete response, develop recurrent NB due to the persistence of minimal residual disease (MRD) that is resistant to conventional antitumor drugs. Indeed, their low therapeutic index prevents drug-dose escalation and protracted administration schedules, as would be required for MRD treatment. Thus, more effective and less toxic therapies are urgently needed for the management of MRD. To address this aim, we evaluated a new combination of fenretinide and lenalidomide, both endowed with antitumor activity and low-toxicity profiles. New nanomicelles were prepared as carriers for this combination to maximize bioavailability and accumulation at the tumor site because of the enhanced permeability and retention (EPR) effect. Experimental design: New nanomicelles containing the fenretinide\u2013lenalidomide combination (FLnMs) were prepared by a one-step method, providing high drug encapsulation and micelle dimensions suitable for tumor accumulation. Their administration to mice bearing human NB xenografts allowed us to evaluate their efficacy in comparison with the nanomicelles containing fenretinide alone (FnMs). Results: Treatment by FLnMs significantly decreased the tumor growth of NB xenografts. FLnMs were more active than FnMs despite comparable fenretinide concentrations in tumors, and lenalidomide alone did not show cytotoxic activity in vitro against NB cells. The tumor mass at the end of treatment with FLnMs was predominantly necrotic, with a decreased Ki-67 proliferation index. Conclusion: FLnMs provided superior antitumor efficacy in NB xenografts compared to FnMs. The enhanced efficacy of the combination was likely due to the antiangiogenic effect of lenalidomide added to the cytotoxic effect of fenretinide. This new nanomicellar combination is characterized by a low-toxicity profile and offers a novel therapeutic option for the treatment of high-risk tumors where the persistence of MRD requires repeated administrations of therapeutic agents over long periods of time to avoid recurrent disease
    corecore