775 research outputs found
Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia
Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR) measurements of solid peat, C/N ratio, and &delta;<sup>13</sup>C and &delta;<sup>15</sup>N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (<i>R</i><sup>2</sup> > 0.55, <i>p</i> < 0.01) with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by <i>Sphagnum</i> mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of &delta;<sup>13</sup>C were 26.5 &plusmn; 2&permil; in the peat and partly related to decomposition indices, while &delta;<sup>15</sup>N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in <sup>13</sup>C and in <sup>15</sup>N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, &delta;<sup>13</sup>C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash deposition and possibly by sea spray input
Scalable Mining of Common Routes in Mobile Communication Network Traffic Data
A probabilistic method for inferring common routes from mobile communication network traffic data is presented. Besides providing mobility information, valuable in a multitude of application areas, the method has the dual purpose of enabling efficient coarse-graining as well as anonymisation by mapping individual sequences onto common routes. The approach is to represent spatial trajectories by Cell ID sequences that are grouped into routes using locality-sensitive hashing and graph clustering. The method is demonstrated to be scalable, and to accurately group sequences using an evaluation set of GPS tagged data
Nafld epidemiology, emerging pharmacotherapy, liver transplantation implications and the trends in the United States
© 2020 Authors. Nonalcoholic fatty liver disease (NAFLD) is a hepatic mani-festation of metabolic syndrome. The spread of obesity worldwide in pandemic proportions has led to a rapid rise of NAFLD in developed and developing countries alike. There are no approved pharmacological agents to treat steatohepatitis or advanced fibrosis but obeticholic acid recently has shown some promise in phase III trial. Currently, NAFLD is the number one etiology for simultaneous liver and kidney transplantation in the USA, second most common indication for liver transplantation (LT) and projected to become number one very soon. LT for NAFLD poses unique challenges, as these patients are generally older, obese and more likely to have a number of metabolic risk factors. Bariatric surgery is an option and can be considered if a structured weight loss program does not achieve the sustained weight loss goal. Comprehensive cardiovascular risk assessment and aggres-sive management of comorbid conditions are crucial in the LT evaluation process to improve post-transplant survival. Re-current nonalcoholic steatohepatitis after LT is not uncom-mon, and thus warrants primary and secondary prevention strategies through a multidisciplinary approach. Prevalence of NAFLD in a donor population is a unique and growing concern that limits the access to quality liver grafts
Power Law of Customers' Expenditures in Convenience Stores
In a convenience store chain, a tail of the cumulative density function of
the expenditure of a person during a single shopping trip follows a power law
with an exponent of -2.5. The exponent is independent of the location of the
store, the shopper's age, the day of week, and the time of day.Comment: 9 pages, 5 figures. Accepted for publication in Journal of the
Physical Society of Japan Vol.77No.
Human TOP1 residues implicated in species specificity of HIV-1 infection are required for interaction with BTBD2, and RNAi of BTBD2 in old world monkey and human cells increases permissiveness to HIV-1 infection
<p>Abstract</p> <p>Background</p> <p>Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5α restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5α splice variant TRIM5Ύ in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.</p> <p>Results</p> <p>We show that the interaction of BTBD1 and BTBD2 with TOP1 requires <it>hu</it>-TOP1 residues 236 and 237, the same residues required to enhance the infectivity of progeny virions when <it>hu</it>-TOP1 is expressed in AGM producer cells. Additionally, interference with the expression of BTBD2 in AGM and human 293T target cells increased their permissiveness to HIV-1 infection two- to three-fold.</p> <p>Conclusions</p> <p>These results do not exclude the possibility that BTBD2 may modestly restrict HIV-1 infection via colocation with TRIM5 variants in cytoplasmic bodies.</p
Minimizing energy below the glass thresholds
Focusing on the optimization version of the random K-satisfiability problem,
the MAX-K-SAT problem, we study the performance of the finite energy version of
the Survey Propagation (SP) algorithm. We show that a simple (linear time)
backtrack decimation strategy is sufficient to reach configurations well below
the lower bound for the dynamic threshold energy and very close to the analytic
prediction for the optimal ground states. A comparative numerical study on one
of the most efficient local search procedures is also given.Comment: 12 pages, submitted to Phys. Rev. E, accepted for publicatio
Boolean delay equations on networks: An application to economic damage propagation
We introduce economic models based on Boolean Delay Equations: this formalism
makes easier to take into account the complexity of the interactions between
firms and is particularly appropriate for studying the propagation of an
initial damage due to a catastrophe. Here we concentrate on simple cases, which
allow to understand the effects of multiple concurrent production paths as well
as the presence of stochasticity in the path time lengths or in the network
structure.
In absence of flexibility, the shortening of production of a single firm in
an isolated network with multiple connections usually ends up by attaining a
finite fraction of the firms or the whole economy, whereas the interactions
with the outside allow a partial recovering of the activity, giving rise to
periodic solutions with waves of damage which propagate across the structure.
The damage propagation speed is strongly dependent upon the topology. The
existence of multiple concurrent production paths does not necessarily imply a
slowing down of the propagation, which can be as fast as the shortest path.Comment: Latex, 52 pages with 22 eps figure
Functional limit theorems for random regular graphs
Consider d uniformly random permutation matrices on n labels. Consider the
sum of these matrices along with their transposes. The total can be interpreted
as the adjacency matrix of a random regular graph of degree 2d on n vertices.
We consider limit theorems for various combinatorial and analytical properties
of this graph (or the matrix) as n grows to infinity, either when d is kept
fixed or grows slowly with n. In a suitable weak convergence framework, we
prove that the (finite but growing in length) sequences of the number of short
cycles and of cyclically non-backtracking walks converge to distributional
limits. We estimate the total variation distance from the limit using Stein's
method. As an application of these results we derive limits of linear
functionals of the eigenvalues of the adjacency matrix. A key step in this
latter derivation is an extension of the Kahn-Szemer\'edi argument for
estimating the second largest eigenvalue for all values of d and n.Comment: Added Remark 27. 39 pages. To appear in Probability Theory and
Related Field
Edge overload breakdown in evolving networks
We investigate growing networks based on Barabasi and Albert's algorithm for
generating scale-free networks, but with edges sensitive to overload breakdown.
the load is defined through edge betweenness centrality. We focus on the
situation where the average number of connections per vertex is, as the number
of vertices, linearly increasing in time. After an initial stage of growth, the
network undergoes avalanching breakdowns to a fragmented state from which it
never recovers. This breakdown is much less violent if the growth is by random
rather than preferential attachment (as defines the Barabasi and Albert model).
We briefly discuss the case where the average number of connections per vertex
is constant. In this case no breakdown avalanches occur. Implications to the
growth of real-world communication networks are discussed.Comment: To appear in Phys. Rev.
- âŠ