5 research outputs found

    SIGINT: The Mission CubeSats are Made For

    Get PDF
    The collection of radio frequency (RF) signals by means of interferometry is an area that shows great promise for small satellite applications and is a shared interest of business and the scientific and military community. SIGnals INTelligence or SIGINT is one of the oldest missions for satellites, especially for its subfield, ELectronic INTelligence (ELINT), the analysis and localization of RF-signals. Unfortunately, the accuracy that customers demand from such systems in order to merit their costs is often incongruent with detection techniques that rely on single nanosatellites (such as Angle of Arrival methods). Accuracy is strongly related to aperture size; rigid antennas are therefore limited to the available surface area of small satellites. Typical accuracies that can be expected of AOA-techniques range from 0.1° – 1°1. Factoring in orbital altitude, this results in geolocation accuracies of 10 km or more for RF-sources close to the satellite’s nadir, increasing rapidly with distance from nadir for missions in LEO. Using a single CubeSat solution with rigid antenna systems limits the type of RF-emitters that can be geolocated with high accuracy (\u3c 0.1°) to X-band (or shorter wavelengths). Deployable structures and small satellites that do not adhere to the CubeSat standard offer a limited solution as there is limited volume available for deployment mechanisms. One of the key benefits of using CubeSats is their lower unit and launch cost. This enables technical solutions that depend on distributing the desired functionality over many satellites, instead of investing in highly sophisticated single satellite payloads. This approach has in the past been studied for space-based interferometers like Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) enabling far larger diameter “apertures” than could be fitted on a single satellite while at the same time simplifying the development and deployment2. The same technologies that enable these scientific missions are at the heart of satellite formations for the purpose of identifying and geolocating RF-emitters on the Earth’s surface, such as inter-satellite datalinks, station-keeping systems and precise avionics. The overlap is not limited to these enabling technologies but also extends to system level characteristics. One of the big obstacles for CubeSat missions beyond LEO is their reliability. CubeSat missions beyond LEO face two hurdles that amplify each other, on the one hand the radiation environment becomes significantly more hostile, complicating the use of COTS components and on the other hand the cost of replenishment increases drastically with distance from Earth. Missions such as OLFAR thus require a step change in the reliability of the subsystems in order for them to be affordable and cost effective. At the same time these same reliability improvements would further decrease the cost of ownership of LEO spectrum monitoring (or SIGINT) constellations

    Autonomous Formation Flight Control System Using In-Flight Sweet-Spot Estimation

    No full text

    The effect of lead free cap on the doses of ionizing radiation to the head of interventional cardiologists working in haemodynamic room

    No full text
    Objectives The study aim was to analyse the influence of the lead free cap on doses received by interventional cardiologists. The impact of lead free cap on doses to the head were evaluated in number of studies. As different methods used to assess the attenuation properties of protective cap can lead to ambiguous results, a detailed study was performed. Material and Methods The effectiveness of a lead free cap in reducing the doses to the skin was assessed in clinic by performing measurements with thermoluminescent dosimeters attached inside and outside the cap first during individual coronary angiography (CA) or CA/percutaneous transluminal coronary angioplasty (CA/PTCA) procedures and then cumulated during few procedures of the same type. In order to investigate the effect of the cap on reducing the doses to the brain additional measurements were performed with a male Alderson Rando and polymethyl methacrylate (PMMA) phantoms representing the physician and the patient, respectively for different projections. The brain dose per procedure, annual and cumulated during entire working practice were estimated for both cases working with and without the cap. Results The dose reduction factor (RF) for the skin (the quotient of doses outside and inside the cap) vary from 1.1 up to 4.0 in clinical conditions; on average 2.3-fold reduction is observed in the most exposed left temple. The RFs determined for the part of the head covered by the cap range from 1.4 to 1.8 while for the brain from 1.0 to 1.1 depending on the projection. The estimated annual brain dose for interventional cardiologist performing yearly 550 CA/PTCA procedures without any protective shields is 7.2 mGy and it is reduced with the lead free cap by an average factor of 1.1. Conclusions The study results proved the considerable effectiveness of lead free cap to protect the skin but very limited to protect the brain

    Effect of the radiation protective apron on the response of active and passive personal dosemeters used in interventional radiology and cardiology

    No full text
    © 2019 Society for Radiological Protection. Published on behalf of SRP by IOP Publishing Limited. All rights reserved. In fluoroscopy guided interventional procedures, workers use protective garments and often two personal dosemeters, the readings of which are used for the estimation of the effective dose; whereas the dosemeter above the protection can be used for the estimation of the equivalent dose of the lens of the eye. When a protective apron is worn the scattered field that reaches the dosemeter is different from the case where no protection is used; this study analyses the changes in the response of seven passive and eight active personal dosemeters (APDs) when they are placed above a lead or lead equivalent garment for S-Cs and x-ray diagnostic qualities. Monte Carlo simulations are used to support the experimental results. It is found that for passive dosemeters, the influence on the dosemeter's response to the lead or lead equivalent was within the range 15%-38% for the x-ray qualities. This effect is smaller, of the order of 10%, when lead-free garments are used, and much smaller, within 1%-10%, for most of the APDs used in the study. From these results it is concluded that when comparing passive and active dosemeter measurements worn above the protection, a difference of 20%-40% is expected. The effect is small when deriving the effective dose from double dosimetry algorithms, but it can be of major importance when eye lens monitoring is based on the use of the dosemeter worn above the protection
    corecore