1,327 research outputs found

    Accelerating random walks by disorder

    Full text link
    We investigate the dynamic impact of heterogeneous environments on superdiffusive random walks known as L\'evy flights. We devote particular attention to the relative weight of source and target locations on the rates for spatial displacements of the random walk. Unlike ordinary random walks which are slowed down for all values of the relative weight of source and target, non-local superdiffusive processes show distinct regimes of attenuation and acceleration for increased source and target weight, respectively. Consequently, spatial inhomogeneities can facilitate the spread of superdiffusive processes, in contrast to common belief that external disorder generally slows down stochastic processes. Our results are based on a novel type of fractional Fokker-Planck equation which we investigate numerically and by perturbation theory for weak disorder.Comment: 8 pages, 5 figure

    Levy flights and Levy -Schroedinger semigroups

    Full text link
    We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.Comment: To appear in Cent. Eur. J. Phys. (2010

    Petroleum exploration subprogram: Geological interpretation of proportional imagery from ERTS-A satellite

    Get PDF
    There are no author-identified significant results in this report

    Video Pandemics: Worldwide Viral Spreading of Psy's Gangnam Style Video

    Full text link
    Viral videos can reach global penetration traveling through international channels of communication similarly to real diseases starting from a well-localized source. In past centuries, disease fronts propagated in a concentric spatial fashion from the the source of the outbreak via the short range human contact network. The emergence of long-distance air-travel changed these ancient patterns. However, recently, Brockmann and Helbing have shown that concentric propagation waves can be reinstated if propagation time and distance is measured in the flight-time and travel volume weighted underlying air-travel network. Here, we adopt this method for the analysis of viral meme propagation in Twitter messages, and define a similar weighted network distance in the communication network connecting countries and states of the World. We recover a wave-like behavior on average and assess the randomizing effect of non-locality of spreading. We show that similar result can be recovered from Google Trends data as well.Comment: 10 page

    Genomics reveals a new genus and species from a single female specimen (Lepidoptera: Hesperiidae: Hesperiinae: Hesperiini: Moncina)

    Get PDF
    New taxa in Hesperiidae (Lepidoptera: Papilionoidea) are traditionally proposed after inspection of male genitalia, which largely form the basis for Hesperiidae taxonomy. However, with genomic DNA se­quencing, even a single female specimen can be placed in a phylogenetic context of existing classification and taxonomically assigned with confidence. Genomic sequencing of an unusually patterned Hesperiidae female from San Martin, Peru, characterized by pearly spots outlining an inverted heart pattern on the rust-colored ventral hindwing, reveals that it represents an undescribed genus and species named here as Gemmia buechei Brockmann and Grishin, new genus and new species. Neotropical regions are rich in undescribed species. While many of them may be cryptic and evade recognition by visual inspection (Hebert et al. 2004), others are distinctive and can be recognized as new at the first glance (Turland et al. 2012). However, it may be a challenge to place such distinctive species within a taxonomic hierar­chy, in particular when only a single specimen is known. Hesperiidae taxonomy relies heavily on the analysis of male genitalia, and descriptions of genus-group taxa traditionally report the structure of male genitalia. However, genera are defined as monophyletic groups of species, and a confident phylogeny that includes all close relatives is a reliable way to define them (Cong et al. 2019; Li et al. 2019; Zhang et al. 2019, 2020, 2022). Here, we illustrate this approach and propose a new Hesperiidae genus based on a single distinctively patterned female specimen. We believe that bringing a new species and the new genus to the attention of researchers has advantages over waiting to find more of its specimens, in particular males. The genomics-based approach that we use puts the phylogenetic placement of this new taxon on a strong footing

    Detection of Endoleaks Following Thoracic and Abdominal Aortic Endovascular Aortic Repair—: A Comparison of Standard and Dynamic 4D-Computed Tomography Angiography

    Get PDF
    Purpose: Endoleaks are a common complication after endovascular aortic repair (EVAR) and thoracic endovascular aortic repair (TEVAR). The detection and correct classification of endoleaks is essential for the further treatment of affected patients. However, standard computed tomography angiography (CTA) provides no hemodynamic information on endoleaks, which can result in misclassification in complex cases. The aim of this study was to compare standard CTA (sCTA) with dynamic, dual-energy CTA (dCTA) for detection and classification of endoleaks following EVAR or TEVAR. Materials and Methods: This retrospective evaluation compared 69 sCTA diagnostic examinations performed on 50 different patients with 89 dCTA diagnostic examinations performed on 69 different patients. Results: In total, 15.9% of sCTA examinations and 49.4% of dCTA examinations led to the detection of endoleaks. With sCTA, 20.0% of patients were diagnosed with endoleaks, while with dCTA, 37.7% of patients were diagnosed with endoleaks. With sCTA, mainly Type 1 endoleaks were detected, whereas, with dCTA, the types of detected endoleaks were more evenly distributed. In comparison with the literature, the frequencies of endoleak types detected with dCTA better reflect the natural distribution than the frequencies detected with standard CTA. Conclusion: Based on the retrospective comparative evaluation, dCTA could pose a valuable supplementary diagnostic tool resulting in a more accurate and realistic detection and classification of suspected endoleaks

    Multiscale mobility networks and the large scale spreading of infectious diseases

    Full text link
    Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. In order to study the interplay between small-scale commuting flows and long-range airline traffic in shaping the spatio-temporal pattern of a global epidemic we i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms; ii) integrate in a worldwide structured metapopulation epidemic model a time-scale separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short range mobility increases however the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multi-scale framework.Comment: 10 pages, 4 figures, 1 tabl

    Directional persistence & the optimality of run-and-tumble chemotaxis

    Get PDF
    E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of not, vert, similar63°. We recently presented a model of the evolution of chemotactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this correlation. The agreement between model and experiments suggests that directional persistence may serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect corresponds very closely with the value observed experimentally. This result is matched by independent simulations of the evolution of directional memory in a population of model bacteria, which also predict the emergence of persistence in high-gradient conditions. The relationship between optimality and persistence in different environments may reflect a universal property of random-walk foraging algorithms, which must strike a compromise between two competing aims: exploration and exploitation. We also present a new graphical way to generally illustrate the evolution of a particular trait in a population, in terms of variations in an evolvable parameter

    Neutron stars with isovector scalar correlations

    Full text link
    Neutron stars with the isovector scalar δ\delta-field are studied in the framework of the relativistic mean field (RMFRMF) approach in a pure nucleon plus lepton scheme. The δ\delta-field leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOSEOS) and the neutron star properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce reasonable nuclear structure and neutron star properties within a RMFRMF approach a density dependence of the coupling constants is required.Comment: 11 pages, 5 figures, revtex4 styl

    Momentum-Dependent Mean Field Based Upon the Dirac-Brueckner Approach for Nuclear Matter

    Full text link
    A momentum-dependent mean field potential, suitable for application in the transport-model description of nucleus-nucleus collisions, is derived in a microscopic way. The derivation is based upon the Bonn meson-exchange model for the nucleon-nucleon interaction and the Dirac-Brueckner approach for nuclear matter. The properties of the microscopic mean field are examined and compared with phenomenological parametrizations which are commonly used in transport-model calculations.Comment: 15 pages text (RevTex) and 4 figures (postscript in a separate uuencoded file), UI-NTH-930
    • …
    corecore