13,177 research outputs found

    Posttraumatic Stress and Parenting Behaviors: The Mediating Role of Emotion Regulation

    Get PDF
    Maternal trauma has been linked with problematic parenting, including both harsh and permissive behaviors. However, little is known about mechanisms accounting for this association. The current study examined the potential impact of posttraumatic stress disorder (PTSD) and emotion regulation on dysfunctional parenting behaviors in a sample of community mothers. We hypothesized a mediation model wherein PTSD would be associated with dysfunctional parenting (i.e., lax and overreactive behaviors) indirectly through deficits in maternal emotion regulation. Seventy-eight community mothers of 18- to 36-month-old children were administered the Clinician Administered PTSD Scale for DSM-5 (CAPS-5) and 19 mothers met criteria for PTSD. Mothers also completed self-report measures of difficulties with emotion regulation and maternal laxness and overreactivity in parenting. Results revealed that emotion dysregulation fully mediated relations between PTSD status and lax (but not overreactive) parenting behaviors. Compared to mothers without PTSD, those with PTSD reported greater lax parenting behaviors indirectly through greater emotion dysregulation. Mothers with PTSD may struggle to parent assertively when trauma symptoms interfere with emotion regulation abilities. The current study highlights the need to design interventions focused on helping trauma-exposed mothers manage distress, ultimately aiming to enhance parenting effectiveness and improve child outcomes

    Study of an engine flow diverter system for a large scale ejector powered aircraft model

    Get PDF
    Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed

    On the exactness of the Semi-Classical Approximation for Non-Relativistic One Dimensional Propagators

    Get PDF
    For one dimensional non-relativistic quantum mechanical problems, we investigate the conditions for all the position dependence of the propagator to be in its phase, that is, the semi-classical approximation to be exact. For velocity independent potentials we find that: (i) the potential must be quadratic in space, but can have arbitrary time dependence. (ii) the phase may be made proportional to the classical action, and the magnitude (``fluctuation factor'') can also be found from the classical solution. (iii) for the driven harmonic oscillator the fluctuation factor is independent of the driving term.Comment: 7 pages, latex, no figures, published in journal of physics

    Uncertainties of predictions from parton distribution functions II: the Hessian method

    Get PDF
    We develop a general method to quantify the uncertainties of parton distribution functions and their physical predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global analysis environment, and the use of parameters defined as components along appropriately normalized eigenvectors. The result is a set of 2d Eigenvector Basis parton distributions (where d=16 is the number of parton parameters) from which the uncertainty on any physical quantity due to the uncertainty in parton distributions can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark distribution functions, W boson rapidity distributions, and the correlation between W and Z production cross sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix changed to HEP standar

    Uncertainty of Exploitation Estimates Made from Tag Returns

    Get PDF

    Report of American Law Institute Committee

    Get PDF

    Synthesis, Structure and Properties of Tetragonal Sr2M3As2O2 (M3 = Mn3, Mn2Cu and MnZn2) Compounds Containing Alternating CuO2-Type and FeAs-Type Layers

    Full text link
    Polycrystalline samples of Sr2Mn2CuAs2O2, Sr2Mn3As2O2, and Sr2Zn2MnAs2O2 were synthesized. Their temperature- and applied magnetic field-dependent structural, transport, thermal, and magnetic properties were characterized by means of x-ray and neutron diffraction, electrical resistivity rho, heat capacity, magnetization and magnetic susceptibility measurements. These compounds have a body-centered-tetragonal crystal structure (space group I4/mmm) that consists of MO2 (M = Zn and/or Mn) oxide layers similar to the CuO2 layers in high superconducting transition temperature Tc cuprate superconductors, and intermetallic MAs (M = Cu and/or Mn) layers similar to the FeAs layers in high-Tc pnictides. These two types of layers alternate along the crystallographic c-axis and are separated by Sr atoms. The site occupancies of Mn, Cu and Zn were studied using Rietveld refinements of x-ray and neutron powder diffraction data. The temperature dependences of rho suggest metallic character for Sr2Mn2CuAs2O2 and semiconducting character for Sr2Mn3As2O2 and Sr2Zn2MnAs2O2. Sr2Mn2CuAs2O2 is inferred to be a ferrimagnet with a Curie temperature TC = 95(1) K. Remarkably, we find that the magnetic ground state structure changes from a G-type antiferromagnetic structure in Sr2Mn3As2O2 to an A-type ferrimagnetic structure in Sr2Mn2CuAs2O2 in which the Mn ions in each layer are ferromagnetically aligned, but are antiferromagnetically aligned between layers.Comment: 18 pages, 16 figures, 6 tables; submitted to Phys. Rev.

    An alternative to killing? Treatment of reservoir hosts to control a vector and pathogen in a susceptible species

    Get PDF
    Parasite-mediated apparent competition occurs when one species affects another through the action of a shared parasite. One way of controlling the parasite in the more susceptible host is to manage the reservoir host. Culling can cause issues in terms of ethics and biodiversity impacts, therefore we ask: can treating, as compared to culling, a wildlife host protect a target species from the shared parasite? We used Susceptible Infected Recovered (SIR) models parameterized for the tick-borne louping ill virus (LIV) system. Deer are the key hosts of the vector (Ixodes ricinus) that transmits LIV to red grouse Lagopus lagopus scoticus, causing high mortality. The model was run under scenarios of varying acaricide efficacy and deer densities. The model predicted that treating deer can increase grouse density through controlling ticks and LIV, if acaricide efficacies are high and deer densities low. Comparing deer treated with 70% acaricide efficacy with a 70% cull rate suggested that treatment may be more effective than culling if initial deer densities are high. Our results will help inform tick control policies, optimize the targeting of control methods and identify conditions where host management is most likely to succeed. Our approach is applicable to other host-vector-pathogen systems
    corecore