114 research outputs found

    Evolutionary history of phosphatidylinositol- 3-kinases: ancestral origin in eukaryotes and complex duplication patterns

    Get PDF
    BACKGROUND: Phosphatidylinositol-3-kinases (PI3Ks) are a family of eukaryotic enzymes modifying phosphoinositides in phosphatidylinositols-3-phosphate. Located upstream of the AKT/mTOR signalling pathway, PI3Ks activate secondary messengers of extracellular signals. They are involved in many critical cellular processes such as cell survival, angiogenesis and autophagy. PI3K family is divided into three classes, including 14 human homologs. While class II enzymes are composed of a single catalytic subunit, class I and III also contain regulatory subunits. Here we present an in-depth phylogenetic analysis of all PI3K proteins. RESULTS: We confirmed that PI3K catalytic subunits form a monophyletic group, whereas regulatory subunits form three distinct groups. The phylogeny of the catalytic subunits indicates that they underwent two major duplications during their evolutionary history: the most ancient arose in the Last Eukaryotic Common Ancestor (LECA) and led to the emergence of class III and class I/II, while the second – that led to the separation between class I and II – occurred later, in the ancestor of Unikonta (i.e., the clade grouping Amoebozoa, Fungi, and Metazoa). These two major events were followed by many lineage specific duplications in particular in vertebrates, but also in various protist lineages. Major loss events were also detected in Vidiriplantae and Fungi. For the regulatory subunits, we identified homologs of class III in all eukaryotic groups indicating that, for this class, both the catalytic and the regulatory subunits were presents in LECA. In contrast, homologs of the regulatory class I have a more recent origin. CONCLUSIONS: The phylogenetic analysis of the PI3K shed a new light on the evolutionary history of these enzymes. We found that LECA already contained a PI3K class III composed of a catalytic and a regulatory subunit. Absence of class II regulatory subunits and the recent origin of class I regulatory subunits is puzzling given that the class I/II catalytic subunit was present in LECA and has been conserved in most present-day eukaryotic lineages. We also found surprising major loss and duplication events in various eukaryotic lineages. Given the functional specificity of PI3K proteins, this suggests dynamic adaptation during the diversification of eukaryotes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0498-7) contains supplementary material, which is available to authorized users

    Core-rod myopathy due to a novel mutation in BTB/POZ domain of KBTBD13 manifesting as late onset LGMD

    Get PDF
    Few genes (RYR1, NEB, ACTA1, CFL2, KBTBD13) have been associated with core-rod congenital myopathies [7]. KBTBD13 belongs to the Kelch-repeat super-family of proteins and is implicated in the ubiquitination pathway. Dominant mutations in KBTBD13 have been associated with a peculiar form of core-rod myopathy (NEM6) so far [10]. Childhood onset, slowly progressive proximal muscle weakness with characteristic slowness of movements and combination of nemaline rods, irregular shaped cores and unusual type2 fibres hypotrophy at muscle biopsy, were the main characteristics shared in all the affected members of the four KBTBD13 families reported in the literature [12]. We report on a 65 years old patient, of Sardinian origin, with atypical clinical and morphological presentation of NEM6 due to a novel mutation in KBTBD13 gene

    Core-rod myopathy due to a novel mutation in BTB/POZ domain of KBTBD13 manifesting as late onset LGMD

    Get PDF
    Few genes (RYR1, NEB, ACTA1, CFL2, KBTBD13) have been associated with core-rod congenital myopathies [7]. KBTBD13 belongs to the Kelch-repeat super-family of proteins and is implicated in the ubiquitination pathway. Dominant mutations in KBTBD13 have been associated with a peculiar form of core-rod myopathy (NEM6) so far [10]. Childhood onset, slowly progressive proximal muscle weakness with characteristic slowness of movements and combination of nemaline rods, irregular shaped cores and unusual type2 fibres hypotrophy at muscle biopsy, were the main characteristics shared in all the affected members of the four KBTBD13 families reported in the literature [12]. We report on a 65 years old patient, of Sardinian origin, with atypical clinical and morphological presentation of NEM6 due to a novel mutation in KBTBD13 gene

    Skeletal Muscle Biopsy Analysis in Reducing Body Myopathy and Other Fhl1-related Disorders

    Get PDF
    FHL1 mutations have been associated with various disorders that include reducing body myopathy (RBM), Emery-Dreifuss-like muscular dystrophy, isolated hypertrophic cardiomyopathy, and some overlapping conditions. We report a detailed histochemical, immunohistochemical, electron microscopic, and immunoelectron microscopic analyses of muscle biopsies from 18 patients carrying mutations in FHL1: 14 RBM patients (Group 1), 3 Emery-Dreifuss muscular dystrophy patients (Group 2), and 1 patient with hypertrophic cardiomyopathy and muscular hypertrophy (Group 2). Group 1 muscle biopsies consistently showed RBs associated with cytoplasmic bodies. The RBs showed prominent FHL1 immunoreactivity whereas desmin, alpha B-crystallin, and myotilin immunoreactivity surrounded RBs. By electron microscopy, RBs were composed of electron-dense tubulofilamentous material that seemed to spread progressively between the myofibrils and around myonuclei. By immunoelectron microscopy, FHL1 protein was found exclusively inside RBs. Group 2 biopsies showed mild dystrophic abnormalities without RBs; only minor nonspecific myofibrillar abnormalities were observed under electron microscopy. Molecular analysis revealed missense mutations in the second FHL1 LIM domain in Group 1 patients and ins/del or missense mutations within the fourth FHL1 LIM domain in Group 2 patients. Our findings expand the morphologic features of RBM, clearly demonstrate the localization of FHL1 in RBs, and further illustrate major morphologic differences among different FHL1-related myopathies

    HNRNPDL-related muscular dystrophy: expanding the clinical, morphological and MRI phenotypes

    Get PDF
    Autosomal dominant limb girdle muscular dystrophy D3 HNRNPDL-related is a rare dominant myopathy caused by mutations in HNRNPDL. Only three unrelated families have been described worldwide, a Brazilian and a Chinese carrying the mutation c.1132G>A p.(Asp378Asn), and one Uruguayan with the mutation c.1132G>C p. (Asp378His), both mutations occurring in the same codon. The present study enlarges the clinical, morphological and muscle MRI spectrum of AD-HNRNPDL-related myopathies demonstrating the significant particularities of the disease. We describe two new unrelated Argentinean families, carrying the previously reported c.1132G>C p.(Asp378His) HNRNPDL mutation. There was a wide phenotypic spectrum including oligo-symptomatic cases, pure limb girdle muscle involvement or distal lower limb muscle weakness. Scapular winging was the most common finding, observed in all patients. Muscle MRIs of the thigh, at different stages of the disease, showed particular involvement of adductor magnus and vastus besides a constant preservation of the rectus femoris and the adductor longus muscles, defining a novel MRI pattern. Muscle biopsy findings were characterized by the presence of numerous rimmed vacuoles, cytoplasmic bodies, and abundant autophagic material at the histochemistry and ultrastructural levels. HNRNPDL-related LGMD D3 results in a wide range of clinical phenotypes from the classic proximal form of LGMD to a more distal phenotype. Thigh MRI suggests a specific pattern. Codon 378 of HNRNPDL gene can be considered a mutation hotspot for HNRNPDL-related myopathy. Pathologically, the disease can be classified among the autophagic rimmed vacuolar myopathies as with the other multisystem proteinopathies.Peer reviewe

    Crenarchaeal CdvA Forms Double-Helical Filaments Containing DNA and Interacts with ESCRT-III-Like CdvB

    Get PDF
    International audienceBACKGROUND: The phylum Crenarchaeota lacks the FtsZ cell division hallmark of bacteria and employs instead Cdv proteins. While CdvB and CdvC are homologues of the eukaryotic ESCRT-III and Vps4 proteins, implicated in membrane fission processes during multivesicular body biogenesis, cytokinesis and budding of some enveloped viruses, little is known about the structure and function of CdvA. Here, we report the biochemical and biophysical characterization of the three Cdv proteins from the hyperthermophilic archaeon Metallospherae sedula. METHODOLOGY/PRINCIPAL FINDINGS: Using sucrose density gradient ultracentrifugation and negative staining electron microscopy, we evidenced for the first time that CdvA forms polymers in association with DNA, similar to known bacterial DNA partitioning proteins. We also observed that, in contrast to full-lengh CdvB that was purified as a monodisperse protein, the C-terminally deleted CdvB construct forms filamentous polymers, a phenomenon previously observed with eukaryotic ESCRT-III proteins. Based on size exclusion chromatography data combined with detection by multi-angle laser light scattering analysis, we demonstrated that CdvC assembles, in a nucleotide-independent way, as homopolymers resembling dodecamers and endowed with ATPase activity in vitro. The interactions between these putative cell division partners were further explored. Thus, besides confirming the previous observations that CdvB interacts with both CdvA and CdvC, our data demonstrate that CdvA/CdvB and CdvC/CdvB interactions are not mutually exclusive. CONCLUSIONS/SIGNIFICANCE: Our data reinforce the concept that Cdv proteins are closely related to the eukaryotic ESCRT-III counterparts and suggest that the organization of the ESCRT-III machinery at the Crenarchaeal cell division septum is organized by CdvA an ancient cytoskeleton protein that might help to coordinate genome segregation

    Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies.

    Full text link
    peer reviewedNemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation
    corecore