21 research outputs found

    Toward a unifying strategy for the structure-based prediction of toxicological endpoints

    No full text
    Most computational methods used for the prediction of toxicity endpoints are based on the assumption that similar compounds have similar biological properties. This principle can be exploited using computational methods like read across or quantitative structure-activity relationships. However, there is no general agreement about which method is the most appropriate for quantifying compound similarity neither for exploiting the similarity principle in order to obtain reliable estimations of the compound properties. Moreover, optimal similarity metrics and modeling methods might depend on the characteristics of the endpoints and training series used in each case. This study describes a comparative analysis of the predictive performance of diverse similarity metrics and modeling methods in toxicological applications. A collection of two quantitative (n = 660, n = 1114) and three qualitative (n = 447, n = 905, n = 1220) datasets representing very different endpoints of interest in drug safety evaluation and rigorous methods were used to estimate the external predictive ability in each case. The results confirm that no single approach produces the best results in all instances, and the best predictions were obtained using different tools in different situations. The trends observed in this study were exploited to propose a unifying strategy allowing the use of the most suitable method for every compound. A comparison of the quality of the predictions obtained by the unifying strategy with those obtained by standard prediction methods confirmed the usefulness of the proposed approach.The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking, under Grant Agreement No. 115002 (eTOX), resources of which are composed of a financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in kind contribution

    Human Intestinal Transporter Database: QSAR Modeling and Virtual Profiling of Drug Uptake, Efflux and Interactions

    No full text
    PURPOSE: Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. METHODS: Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. RESULTS & CONCLUSIONS: QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles

    Predicting Efflux Ratios and Blood-Brain Barrier Penetration from Chemical Structure: Combining Passive Permeability with Active Efflux by P-Glycoprotein

    No full text
    [Image: see text] In order to reach their pharmacologic targets, successful central nervous system (CNS) drug candidates have to cross a complex protective barrier separating brain from the blood. Being able to predict a priori which molecules can successfully penetrate this barrier could be of significant value in CNS drug discovery. Herein we report a new computational approach that combines two mechanism-based models, for passive permeation and for active efflux by P-glycoprotein, to provide insight into the multiparameter optimization problem of designing small molecules able to access the CNS. Our results indicate that this approach is capable of distinguishing compounds with high/low efflux ratios as well as CNS+/CNS– compounds and provides advantage over estimating P-glycoprotein efflux or passive permeability alone when trying to predict these emergent properties. We also demonstrate that this method could be useful for rank-ordering chemically similar compounds and that it can provide detailed mechanistic insight into the relationship between chemical structure and efflux ratios and/or CNS penetration, offering guidance as to how compounds could be modified to improve their access into the brain

    Priority populations’ experiences of isolation, quarantine and distancing for COVID-19: protocol for a longitudinal cohort study (Optimise Study)

    No full text
    Introduction Longitudinal studies can provide timely and accurate information to evaluate and inform COVID-19 control and mitigation strategies and future pandemic preparedness. The Optimise Study is a multidisciplinary research platform established in the Australian state of Victoria in September 2020 to collect epidemiological, social, psychological and behavioural data from priority populations. It aims to understand changing public attitudes, behaviours and experiences of COVID-19 and inform epidemic modelling and support responsive government policy.Methods and analysis This protocol paper describes the data collection procedures for the Optimise Study, an ongoing longitudinal cohort of ~1000 Victorian adults and their social networks. Participants are recruited using snowball sampling with a set of seeds and two waves of snowball recruitment. Seeds are purposively selected from priority groups, including recent COVID-19 cases and close contacts and people at heightened risk of infection and/or adverse outcomes of COVID-19 infection and/or public health measures. Participants complete a schedule of monthly quantitative surveys and daily diaries for up to 24 months, plus additional surveys annually for up to 48 months. Cohort participants are recruited for qualitative interviews at key time points to enable in-depth exploration of people’s lived experiences. Separately, community representatives are invited to participate in community engagement groups, which review and interpret research findings to inform policy and practice recommendations.Ethics and dissemination The Optimise longitudinal cohort and qualitative interviews are approved by the Alfred Hospital Human Research Ethics Committee (# 333/20). The Optimise Study CEG is approved by the La Trobe University Human Ethics Committee (# HEC20532). All participants provide informed verbal consent to enter the cohort, with additional consent provided prior to any of the sub studies. Study findings will be disseminated through public website (https://optimisecovid.com.au/study-findings/) and through peer-reviewed publications.Trial registration number NCT05323799
    corecore