49 research outputs found

    Análisis biomecánico de la influencia del material de fabricación de implantes dentales en la transferencia de carga al terreno de soporte

    Get PDF
    La utilización de implantes dentales para la rehabilitación de piezas dentales pérdidas se encuentra en pleno crecimiento, consiguiendo devolver y mejorar la función y estética de los pacientes. El principal material usado en la fabricación de implantes dentales es el titanio. En un principio se utilizaron implantes de titanio comercialmente puro, aunque debido a sus limitadas propiedades mecánicas se comenzó a utilizar el titanio en aleación con otros materiales como el vanadio y aluminio. Un implante osteointegrado se une de manera rígida al hueso y, al contrario que los dientes, carece de ligamento periodontal. Por tanto, la tensión que recibe un implante a consecuencia de las cargas masticatorias no se disipa en movimiento, como ocurre en los dientes, sino que se disipa en deformación. Si esta deformación supera el umbral de deformación ósea se producirán microfracturas óseas y por tanto la consecuente pérdida de hueso.La aleación Ti-6Al-4V presenta cierta incompatibilidad mecánica con el hueso, por su alto módulo de elasticidad aparte de contener iones tóxicos como el aluminio y el vanadio. El Módulo de Young o elasticidad tipificado para esta aleación es de 110 GPa, lo cual dista mucho del relativo al hueso que es de aproximadamente 14GPa en hueso cortical y 1.4GPa en hueso esponjoso.Esto supone, según el fenómeno de análisis de haz complejo, que dos materiales con diferentes Módulos de Young unidos y sometidos a carga transmiten la tensión en el primer punto en el que entran en contacto.Como consecuencia la tensión, y por tanto deformación en el caso de los implantes dentales, se concentra a nivel de la cresta ósea produciendo la pérdida de hueso marginal. La aleación Ti-6Al-4V es la más utilizada en la fabricación de implantes dentales; si bien es cierto en la actualidad es necesario desarrollar nuevas aleaciones más biomiméticas con la finalidad de que sean más biocompatibles y permitan asegurar un correcto funcionamiento en el cuerpo humano como la aleación hiperelástica de Ti-Nb-Zr. En este sentido existen en el mercado otras aleaciones como la Ti-15Zr que aporta un mayor límite elástico al implante e implantes cerámicos de Y-TZP que otorgan una coloración blanca al implante concediendo mejor estética y todas ellas con distintas propiedades elásticas y por tanto, distinto comportamiento biomecánico.El objetivo de la presente tesis doctoral es evaluar cómo influyen las propiedades elásticas del material de fabricación de los implantes dentales en la transferencia de carga al hueso peri-implantario en términos de magnitud y distribución de tensión y deformación.Se realizó un análisis de elementos finitos 3D tomando como modelo una sección de hueso mandibular y un implante unitario sobre el que se retuvo cementada una corona ceramometálica sobre pilar de titanio. Se compararon cuatro tipos de aleaciones: rígida (Y-TZP), convencional (Ti-6Al-4V y Ti-15Zr) e hiperelástica (Ti-Nb-Zr). Se ensayó una carga estática de 150N de magnitud sobre fosa central, con una dirección de 6 grados respecto al eje axial del implante.Los resultados no mostraron diferencias en la distribución de la tensión y deformación del hueso, para los cuatro tipos de aleaciones a estudio, concentrándose ambas fundamentalmente a nivel de la cortical periimplantaria. Si embargo si se encontraron diferencias en la magnitud de la tensión transferida al hueso de soporte, siendo la aleación más rígida (Y-TZP) la que menos tensión y deformación transfiere al hueso cortical.Se concluye que existe influencia del material de fabricación de los implantes dentales en la magnitud de la tensión y la deformación transferida al hueso peri-implantario.Bibliografía1) Adell R, Eriksson B, Lekholm U, Brånemark PI, Jemt T. A long term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 1990;5:347–359.2) MischCE,SuzukiJB,Misch-DietshFM,BidezMW. A positive correlation between occlusal trauma and peri-implant bone loss: Literature support. Implant Dent 2005;14:108–116.3) Frost HM. A 2003 update of bone physiology and Wolff‟s Law for clinicians. Angle Orthodontist 2004; 74:3-15.4) Roberts E, Garetto L, Brezniak, N. Bone physiology and metabolism. St Louis: Mosby, 1994.5) Frost HM. A 2003 update of bone physiology and Wolff‟s Law for clinicians. Angle Orthodontist 2004; 74:3-15.6) Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: Review of experimental literature. J Biomed Mater Res. 1998;43:192–203.7) Laurell L, Lundgren D. Marginal bone level changes at dental implants after 5 years in function: a meta-analysis. Clin Implant Dent Relat Res. 2011Mar;13(1):19- 28.8) Firme CT, Vettore MV, Melo M, Vidigal GM Jr. Peri-implant bone loss around single and multiple prostheses: systematic review and meta-analysis. Int J Oral Maxillofac Implants. 2014 Jan-Feb;29(1):79-87.9) Akça K, Uysal S, Cehreli MC. Implant-tooth-supported fixed partial prostheses: correlations between in vivo occlusal bite forces and marginal bone reactions. Clin Oral Implants Res. 2006 Jun;17(3):331-6.10) Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosth Dent. 1983; 49:843-848.11) Baumeister T, Avallone EA. Mark’s standard handbook of mechanical engineers. Nueva York: McGraw-Hill, 1978.12) Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant - a three dimensional finite element analysis. J Oral Rehabil 2005; 32:279-286.13) Timoshenko S, Goodier JN. Theory of elasticity. Nueva York: Mc Graw- Hill. 1951.14) Kozlovsky A, Tal H, Laufer BZ, Leshem R, Rohrer MD, Weinreb M, Artzi Z. Impact of implant overloading on the peri-implant bone in inflamed and non- inflamed peri-implant mucosa. Clin Oral Implants Res 2007; 18:601-610.15) Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials 4 2003; 445–454. 16) Lee TJ, Ueno T, Nomura N, Wakabayashi N, Hanawa T. Titanium-Zirconium binary alloy as dental implant material: analysis of the influence of compositional change on mechanical properties and in vitro biologic response. Int J Oral Maxillofac Implants. 2016; 31(3):547-54.17) Piconi C., Maccauro G. Zirconia as ceramic biomaterial. Biomaterials. 1999; 20(1):1-25.18) Karre R, Niranjan MK, Dey SR. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2015; 50:52-8. 19) Park CH, Lee CS, Kim YJ, Jang JH, Suh JY, Park JW. Improved pre-osteoblast response and mechanical compatibility of ultrafine-grained Ti-13Nb-13Zr alloy. Clin Oral Implants Res. 2011;22(7):735-42.20) Meng Q, Guo S, Liu Q, Hu L, Zhao X. A beta-type TiNbZr alloy with low modulus and high strength for biomedical applications. Progress in Natural Science: Materials International 2014; 24(2): 157-162. 21) Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, Dubinskiy S. Mechanical properties of porous metastable beta Ti–Nb–Zr alloys for biomedical applications. Journal of Alloys and Compounds 2013; 577S: 413–417.22) Elias LM, Schneider SG, Schneider S, Silva HM, Malvisi F. Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mat Sci Eng A- Struct 2013; 577S: 413-417.23) Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001; 85: 585–598.24) Lekholm U, Zarb GA. Patient selection and preparation. In: Bränemark P-I, Zarb GA, Albreksson T, editors. Tissue-integrated prostheses. Osseointegration in clinical dentistry. Chicago: Quintessence; 1985. p. 199–209.25) Álvarez-Arenal A, Segura-Mori L, Gonzalez-Gonzalez I, Gago A. Stress distribution in the abutment and retention screw of a single implant supporting a prosthesis with platform switching. Int J Oral Maxillofac Implants 2013; 28 (3): e112-21.26) Karre R, Niranjan MK, Dey SR. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications. Mater Sci Eng C Mater Biol Appl 2015; 50:52-58.27) Bona AD, Anusavice KJ, DeHoff PH. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater. 2003; 19(7):662-9.28) Meijer HJA, Starmans FJM, Bosman F, Steen WHA. A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehabil 1993;20:147–157.29) Papavasiliou G, Kamposiora P, Bayne SC, Felton DA. Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 1996;76:633–640.30) Álvarez-Arenal Á, Segura-Mori L, Gonzalez-Gonzalez I, DeLlanos-Lanchares H, Sanchez-Lasheras F, Ellacuria-Echevarria J. Stress distribution in the transitional peri-implant bone in a single implant-supported prosthesis with platform- switching under different angulated loads. Odontology. 2016.31) Watanabe M, Hattori Y, Satoh Ch. Biological and biomechanical perspectives of normal dental oclusion. International Congress Series. 2005. 1284: 21-27.32) Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants. 2000; 15(1):15-46.33) Çaglar A, Bal BT, Karakoca S, Aydın C, Yılmaz H, Sarısoy S. Three-dimensional finite element analysis of titanium and yttrium-stabilized zirconium dioxide abutments and implants. Int J Oral Maxillofac Implants. 2011; 26(5):961-9.34) Bankoğlu Güngör M, Yılmaz H. Evaluation of stress distributions occurring on zirconia and titanium implant-supported prostheses: A three-dimensional finite element analysis. J Prosthet Dent. 2016.35) Bal BT, Cağlar A, Aydin C, Yilmaz H, Bankoğlu M, Eser A. Finite element analysis of stress distribution with splinted and nonsplinted maxillary anterior fixed prostheses supported by zirconia or titanium implants. Int J Oral Maxillofac Implants. 2013; 28(1):e27-38.36) Osman RB, Elkhadem AH, Ma S, Swain MV. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2013; 28(5):e198-208. 37) Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: Review of experimental literature. J Biomed Mater Res. 1998;43:192–203.<br /

    Osteotome sinus floor elevation without grafting material: results of a 2-year prospective study

    Get PDF
    Objectives: The aim of this prospective clinical trial was to evaluate the success implant rates during 24 months using OSFE procedure without grafting materials. Study Design: 42 adult patients (22 female, 15 male) were selected according to Nedir et al ?s inclusion criteria of which 5 patients were excluded, due to periapical pathology in adjacent teeth (n=3) and treatment with bisphos - phonates (n=2). 37 patients aged 31-68 years were selected. Smokers were divided in two groups depending on the number of cigarettes consumed per day (a) 0-10, (b) 11-20. One patient was excluded because he was lost to follow- up at 24 months A total of 36 threaded implants were placed, | 4,1mm Straumann® (Straumann AG, Waldenburg, Switzerland) and | 3,5mm Klockner® (Klockner Implant System, Barcelona, Spain). The most used implant dia - meter was 4,1 mm (n=29), followed by 3,5 mm (n=7), and length used was 10 mm (n=32) and 8 mm (n=4). Initial RBH ranged from 4 mm to 9 mm. All statistical data were processed using the program R 3.0.2 for windows. Results: A total of 36 threaded implants were placed. Residual bone height (RBH) at implant placement averaged 7,4 ± 0,4 mm. Mean bone gain was 1,8 ± 0,3 mm. Four implants showed a bone gain exceeding 3 mm. Mean im - plant protrusion length into the sinus amounted to 2.1 ± 0,3 mm. Regarding the relationship between smoking and periodontal probes, no statistically significant differences were found ( P =0,25), neither in relation to the number of threads that the implants showed ( P =0,29) or bone gain ( P =0,79). After 24 months the implant success rate was 91,6%. Conclusions: Implant rehabilitation of edentulous atrophied posterior maxilla can be safely performed and simpli - fied using the OSFE technique without grafting with reliable long-term results

    Influence of Bone-Level Dental Implants Placement and of Cortical Thickness on Osseointegration: In Silico and In Vivo Analyses

    Get PDF
    The purpose of this research is to study the biomechanical response of dental implants in bone-level type locations, 0.5 mm above and below the bone level. In addition, the influence of the thickness of the cortical bone on osseointegration is determined due to the mechanical loads transfer from the dental implant to the cortical and trabecular bone. The thicknesses studied were 1.5 mm and 2.5 mm. Numerical simulations were performed using a finite element method (FEM)- based model. In order to verify the FEM model, the in silico results were compared with the results obtained from a histological analysis performed in an in vivo study with 30 New Zealand rabbits. FEM was performed using a computerized 3D model of bone-level dental implants inserted in the lower jawbone with an applied axial load of 100 N. The analysis was performed using different distances from the bone level and different thicknesses of cortical bone. The interface area of bone growth was evaluated by analyzing the bone–implant contact (BIC), region of interest (ROI) and total bone area (BAT) parameters obtained through an in vivo histological process and analyzed by scanning electron microscopy (SEM). Bone-level implants were inserted in the rabbit tibiae, with two implants placed per tibia. These parameters were evaluated after three or six weeks of implantation. FEM studies showed that placements 0.5 mm below the bone level presented lower values of stress distribution compared to the other studied placements. The lower levels of mechanical stress were then correlated with the in vivo studies, showing that this position presented the highest BIC value after three or six weeks of implantation. In this placement, vertical bone growth could be observed up the bone level. The smallest thickness of the study showed a better transfer of mechanical loads, which leads to a better osseointegration. In silico and in vivo results both concluded that the implants placed 0.5 mm below the cortical bone and with lower thicknesses presented the best biomechanical and histological behavior in terms of new bone formation, enhanced mechanical stability and optimum osseointegration

    Differences between the fittings of dental prostheses produced by CAD-CAM and laser sintering processes

    Get PDF
    Digital dentistry and new techniques for the dental protheses’ suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium–cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.Peer ReviewedPostprint (published version

    Influencia de la presión de compactación durante la colocación del injerto óseo particulado en la angiogénesis y en la neoformación ósea en los procedimientos de regeneración ósea guiada

    Get PDF
    Introducción: En la actualidad, la compactación que se realiza sobre los injertos óseos particulados durante los procedimientos de regeneración ósea guiada se realiza de forma manual y no controlada, sin reparar en la fuerza que se ejerce sobre dichos biomateriales. El objetivo de este estudio fue, por tanto, el de mostrar si la fuerza de compresión en el empaquetamiento del injerto óseo particulado influye en los resultados de regeneración ósea en cuanto a la angiogénesis y a la neoformación ósea. Material y métodos: Para poder llevar a cabo el experimento in vivo, se diseñó, fabricó y calibró un instrumento compactador para uso clínico capaz de realizar la compactación de los injertos óseos particulados de una forma controlada y precisa, estandarizando así este procedimiento. Tras la comprobación con diversos estudios in vitro de la diferente reorganización de las partículas con el empleo de diferentes fuerzas de compresión, se procedió a la realización de un estudio in vivo. Para ello se fijaron dos cilindros de titanio en la calota de 8 conejos de Nueva Zelanda. Los defectos resultantes eran de 6,9 mm de diámetro y 4 mm de altura. Ambos defectos se rellenaron con partículas de hidroxiapatita bovina sometidas a una fuerza de compresión de 0,7 kg/cm2 o de 1,6 kg/cm2 antes de cubrirse con una membrana de colágeno reabsorbible. A las 6 semanas los animales fueron sacrificados y se evaluaron los resultados histológicamente en dos zonas de interés, la porción más próxima a la calota (ROI1) y la más alejada (ROI2), en el cuerpo del cilindro.Resultados: Se observó que junto a la bóveda craneal (ROI1), la neoformación ósea (NBF) fue de 29,0% ± 8,8% y de 27,6% ± 8,2% tras emplear una baja y una alta fuerza de compresión, respectivamente; el contacto hueso-biomaterial (BBC) fue de 58,2% ± 25,0% y de 69,3% ± 22,9%, respectivamente (p > 0,05). En el área más alejada de la calota junto a la membrana de colágeno (ROI2), la NBF fue de 4,9% ± 5,1% y de 5,7% ± 4,7% tras emplear una baja y una alta fuerza de compresión respectivamente y el BBC fue de 18,3% ± 20,8% y de 20,1% ± 15,9% (p > 0,05). Además, el número y el área de los vasos sanguíneos no se vieron afectados significativamente por estas fuerzas de compresión. Conclusión: Según los resultados obtenidos y teniendo en cuenta las limitaciones del estudio, se puede concluir que ambas fuerzas de compresión aplicadas dieron como resultado una consolidación similar de la hidroxiapatita bovina expresada por la formación de nuevo hueso y la vascularización según un modelo de aumento de la bóveda craneal de conejo.<br /

    Corrosion Behavior of Titanium Dental Implants with Implantoplasty

    Get PDF
    The procedure generally used to remove bacterial biofilm adhering to the surface of titanium on dental implants is implantoplasty. This treatment is based on the machining of the titanium surface to remove bacterial plaque. In this study, we used 60 grade 4 titanium implants and performed the implantoplasty protocol. Using X-ray diffraction, we determined the stresses accumulated in each of the as-received, machined and debris implants. The resistance to corrosion in open circuit and potentiodynamically in physiological medium has been determined, and the corrosion potentials and intensities have been determined. Tests have been carried out to determine ion release by ICP-MS at different immersion times. The results show that the corrosion resistance and the release of titanium ions into the medium are related to the accumulated energy or the degree of deformation. The titanium debris exhibit compressive residual stresses of −202 MPa, the implant treated with implantoplasty −120 MPa, and as-received −77 MPa, with their corrosion behavior resulting in corrosion rates of 0.501, 0.77, and 0.444 mm/year, respectively. Debris is the material with the worst corrosion resistance and the one that releases the most titanium ions to the physiological medium (15.3 ppb after 21 days vs. 7 ppb for as-received samples). Pitting has been observed on the surface of the debris released into the physiological environment. This behavior should be taken into account by clinicians for the good long-term behavior of implants with implantoplasty

    Mechanical characterization of dental prostheses manufactured with PMMA–graphene composites

    Get PDF
    The use of a PMMA composite with graphene is being commercialized for application as dental prostheses. The different proportions of fibers provide a wide range of colors that favors dental esthetics in prostheses. However, there are no studies that have explained the influence that graphene has on the mechanical properties. In this contribution, we studied the PMMA and PMMA material with graphene fibers (PMMA-G) in the form of discs as supplied for machining. The presence of graphene fibers has been studied by Raman spectroscopy and the Shore hardness and Vickers micro hardness were determined. Mechanical compression tests were carried out to obtain the values of maximum strength and Young’s modulus (E) and by means of pin-on-disc wear tests, the specific wear rate and the friction coefficients were determined following the established international standards. Finally, the samples were characterized by field emission scanning electron microscopy (FESEM) to characterize the graphene’s morphology inside the PMMA. The results showed the presence of graphene in PMMA and was estimated in an amount of 0.1027% by weight in G-PMMA. The Shore hardness and Vickers microhardness values did not show statistically significant differences. Differences were observed in the compression maximum strength (129.43 MPa for PMMA and 140.23 for PMMA-G) and E values (2.01 for PMMA and 2.89 GPa for PMMA-G) as well as in the lower wear rate for the G-PMMA samples (1.93 × 10-7 for PMMA and 1.33 × 10-7 mm3/N·m) with a p < 0.005. The coefficients of friction for PMMA-G decreased from 0.4032 for PMMA to 0.4001 for PMMA-G. From the results obtained, a slight content in graphene produced a significant improvement in the mechanical properties that could be observed in the prosthesis material. Therefore, we can state that the main attraction of this material for dental prosthesis is its esthetics.Peer ReviewedPostprint (published version

    Mechanical properties of CoCr dental-prosthesis restorations made by three manufacturing processes. Influence of the microstructure and topography

    Get PDF
    The aim of this study is to compare the mechanical properties of three different dental restorations’ manufacturing processes (CADCAM milling, casting and laser sintering) generated by only one laboratory scanner focusing on marginal fit analysis and their mechanical properties. A chrome-cobalt (Cr-Co) alloy from the same batch was used for three different methods to make an implant abutment. This simulates a maxillary right first molar that was fixed in a hemi-maxillary stone model. Five scans were performed by each tested framework. Nine frameworks were manufactured for each manufacture procedure. Field-Emission Scanning Electron Microscope (FE-SEM) direct vision was used to marginal gap measurement in five critical points for each specimen. In order to fix the samples in the microscope chamber, the restorations were submitted at a compression load of 50 N. The samples always have the same orientation and conditions. The resolution of the microscope is 4 nm and it is equipped by J image software. The microstructure of the samples was also determined with the FE-SEM equipped with EDS-microanalysis. Roughness parameters were measured using White Light Interferometry (WLI). The arithmetical mean for the Ra and Rq of each sample was calculated. The samples were mechanically characterized by means of microhardness and flexural testing. Servo-hydraulic testing machine was used with cross-head rate of 1 mm/min. Two-way ANOVA statistical analysis was performed to determine whether the marginal discrepancies and mechanical properties were significantly different between each group (significance level p < 0.05). The overall mean marginal gap values were: from 50.53 ± 10.30 µm for the samples produced by CADCAM to 85.76 ± 22.56 µm for the samples produced by the casting method. Laser sintering presents a marginal gap of 60.95 ± 20.66 µm. The results revealed a statistically significant difference (p-value < 0.005) in the mean marginal gap between the CADCAM systems studied. The higher flexure load to fracture for these restorations were for CADCAM restoration and the lower was for the casting samples. For these restorations, CADCAM Restoration yielded a higher flexure load to fracture and Casting ones yielded the lower. Porosity and microstructure play a very important role in the mechanical properties.Peer ReviewedPostprint (published version

    Logistic Regression Analysis of the Factors Involved in the Failure of Osseointegration and Survival of Dental Implants with an Internal Connection and Machined Collar: A 6-Year Retrospective Cohort Study

    Get PDF
    Background. Although the long-term success rate of dental implants is currently close to 95%, it is necessary to provide more evidence on the factors related to the failure of osseointegration and survival. Purpose. To establish the risk factors associated with the failure of osseointegration and survival of dental implants with an internal connection and machined collar and to establish a predictive statistical model. Materials and Methods. An analytical, retrospective, and observational clinical study of a sample of 297 implants with a follow-up of up to 76 months. Independent variables related to the implant, patient, and surgical and rehabilitative procedures were identified. The dependent variables were failure of osseointegration and failure of implant survival after prosthetic loading. A survival analysis was carried out by applying the Kaplan-Meier model (significance for ). The log-rank test and the Cox regression analysis were applied to the factors that presented differences. Finally, the regression logit function was used to determine whether it is possible to predict the risk of implant failure according to the analyzed variables with the data obtained in this study. Results. The percentages of osseointegration and survival were 97.6 and 97.2%, respectively. For osseointegration, there were significant differences according to gender (), and the risk of nonosseointegration was 85% lower in women. Regarding survival, the Cox analysis converged on only two factors, which were smoking and treatment with anticoagulant drugs. The risk of loss was multiplied by 18.3 for patients smoking more than 10 cigarettes per day and by 28.2 for patients treated with anticoagulants. Conclusions. The indicated risk factors should be considered, but the analysis of the results is not sufficient to create a predictive model.Odontologí
    corecore