1,956 research outputs found
Molecular Quantum Computing by an Optimal Control Algorithm for Unitary Transformations
Quantum computation is based on implementing selected unitary transformations
which represent algorithms. A generalized optimal control theory is used to
find the driving field that generates a prespecified unitary transformation.
The approach is illustrated in the implementation of one and two qubits gates
in model molecular systems.Comment: 10 pages, 2 figure
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
Photosynthetic antenna complexes capture and concentrate solar radiation by
transferring the excitation to the reaction center which stores energy from the
photon in chemical bonds. This process occurs with near-perfect quantum
efficiency. Recent experiments at cryogenic temperatures have revealed that
coherent energy transfer - a wavelike transfer mechanism - occurs in many
photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson
antenna complex (FMO) as a model system, theoretical studies incorporating both
incoherent and coherent transfer as well as thermal dephasing predict that
environmentally assisted quantum transfer efficiency peaks near physiological
temperature; these studies further show that this process is equivalent to a
quantum random walk algorithm (5-8). This theory requires long-lived quantum
coherence at room temperature, which never has been observed in FMO. Here we
present the first evidence that quantum coherence survives in FMO at
physiological temperature for at least 300 fs, long enough to perform a
rudimentary quantum computational operation. This data proves that the
wave-like energy transfer process discovered at 77 K is directly relevant to
biological function. Microscopically, we attribute this long coherence lifetime
to correlated motions within the protein matrix encapsulating the chromophores,
and we find that the degree of protection afforded by the protein appears
constant between 77 K and 277 K. The protein shapes the energy landscape and
mediates an efficient energy transfer despite thermal fluctuations. The
persistence of quantum coherence in a dynamic, disordered system under these
conditions suggests a new biomimetic strategy for designing dedicated quantum
computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file
Georreferenciamento e validação do cadastro das usinas fornecedoras de etanol no Brasil.
Este trabalho teve como objetivo identificar a geolocalização das plantas industriais fornecedoras de etanol, elaborar e colocar à disposição arquivos vetoriais do tipo ?shapefile? (ESRI), para visualização desta distribuição espacial no território nacional, bem como servir de banco de dados fonte para trabalhos de geoprocessamento relacionados à identificação de regiões produtoras de cana-de-açúcar no Brasil
Optimizing sparse sampling for 2D electronic spectroscopy
We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points
Analytical solution of the optimal laser control problem in two-level systems
The optimal control of two-level systems by time-dependent laser fields is
studied using a variational theory. We obtain, for the first time, general
analytical expressions for the optimal pulse shapes leading to global
maximization or minimization of different physical quantities. We present
solutions which reproduce and improve previous numerical results.Comment: 12 pages, 2 figure
Deterministic spatio-temporal control of nano-optical fields in optical antennas and nano transmission lines
We show that pulse shaping techniques can be applied to tailor the ultrafast
temporal response of the strongly confined and enhanced optical near fields in
the feed gap of resonant optical antennas (ROAs). Using finite-difference
time-domain (FDTD) simulations followed by Fourier transformation, we obtain
the impulse response of a nano structure in the frequency domain, which allows
obtaining its temporal response to any arbitrary pulse shape. We apply the
method to achieve deterministic optimal temporal field compression in ROAs with
reduced symmetry and in a two-wire transmission line connected to a symmetric
dipole antenna. The method described here will be of importance for experiments
involving coherent control of field propagation in nanophotonic structures and
of light-induced processes in nanometer scale volumes.Comment: 5 pages, 5 figure
Non-Destructive Identification of Cold and Extremely Localized Single Molecular Ions
A simple and non-destructive method for identification of a single molecular
ion sympathetically cooled by a single laser cooled atomic ion in a linear Paul
trap is demonstrated. The technique is based on a precise determination of the
molecular ion mass through a measurement of the eigenfrequency of a common
motional mode of the two ions. The demonstrated mass resolution is sufficiently
high that a particular molecular ion species can be distinguished from other
equally charged atomic or molecular ions having the same total number of
nucleons
Foundations for Cooperating with Control Noise in the Manipulation of Quantum Dynamics
This paper develops the theoretical foundations for the ability of a control
field to cooperate with noise in the manipulation of quantum dynamics. The
noise enters as run-to-run variations in the control amplitudes, phases and
frequencies with the observation being an ensemble average over many runs as is
commonly done in the laboratory. Weak field perturbation theory is developed to
show that noise in the amplitude and frequency components of the control field
can enhance the process of population transfer in a multilevel ladder system.
The analytical results in this paper support the point that under suitable
conditions an optimal field can cooperate with noise to improve the control
outcome.Comment: submitted to Phys. Rev.
Nanoscale force manipulation in the vicinity of a metal nanostructure
The tight focus of Gaussian beams is commonly used to trap dielectric particles in optical tweezers. The corresponding field distribution generates a well-defined trapping potential that is only marginally controllable on a nanometre scale. Here we investigate the influence of a metal nanostructure that is located in the vicinity of the trapping focus on the trapping potential by calculating the corresponding field and force distributions. Even for an excitation wavelength that is tuned far from the plasmonic resonance of the nanostructure, the presence of the latter alters significantly the trap potential. For the given nanostructure, a ring of spheres that is illuminated in the axial direction, a smaller focus volume is observed in comparison to free focus. The superposition of this non-resonant Gaussian field with a planar wave illumination that is tuned to the plasmonic resonance gives a handle to modify the trapping potential. Polarization and intensity of the resonant illumination allows modifying the equilibrium position of the trapping potential, thus providing means to steer dielectric particles with nanometre precision. © 2007 IOP Publishing Ltd.TB thanks the DFG for an Emmy Noether Fellowship.Peer Reviewe
- …
