23 research outputs found

    Survey of phytophagous insects and foliar pathogens in China for a biocontrol perspective on kudzu, Pueraria montana var. lobata (Willd.) Maesen and S. Almeida (Fabaceae)

    Get PDF
    A three-year survey of kudzu foliage, seed, stems, and roots for associated phytophagous insects was conducted to establish basic information about the insect communities that kudzu harbors in China and to assess the abundance, diversity and damage caused by these insects. Diseases of kudzu were also surveyed in southern China. A total of 116 phytophagous insect species in 31 families and 5 orders were collected from kudzu in China, in six feeding guilds: foliage, sap, stem, terminal, seed and root feeders. The impact of foliage feeders varied from site to site and year to year, and over the course of the growing season. The mean percent defoliation of kudzu over all plots and years was 13.3±1.9%, but ranged as high as 34%. Two insect species fed on shoots and clipped off terminals. Infestation of new shoots was high, with nearly half of all shoots clipped. Nearly half of the vines showed damage from stem borers, again varying through the season. Two species of insects attacked kudzu roots, mainly the cerambycid beetle Paraleprodera diophthalma (Pascoe), which caused considerable damage to both small (young, \u3c3.4 cm diameter) and large (older, \u3e6 cm diameter) roots. Insects also caused substantial seed damage. Imitation rust, caused by Synchytrium minutum [=S. puerariae (P. Henning) Miyabe], was the most commonly observed disease of kudzu. Several of these species have potential as biological control agents for kudzu in the US

    Effectiveness of the International Phytosanitary Standard ISPM No. 15 on Reducing Wood Borer Infestation Rates in Wood Packaging Material Entering the United States

    Get PDF
    Numerous bark- and wood-infesting insects have been introduced to new countries by international trade where some have caused severe environmental and economic damage. Wood packaging material (WPM), such as pallets, is one of the high risk pathways for the introduction of wood pests. International recognition of this risk resulted in adoption of International Standards for Phytosanitary Measures No. 15 (ISPM15) in 2002, which provides treatment standards for WPM used in international trade. ISPM15 was originally developed by members of the International Plant Protection Convention to “practically eliminate” the risk of international transport of most bark and wood pests via WPM. The United States (US) implemented ISPM15 in three phases during 2005–2006. We compared pest interception rates of WPM inspected at US ports before and after US implementation of ISPM15 using the US Department of Agriculture AQIM (Agriculture Quarantine Inspection Monitoring) database. Analyses of records from 2003–2009 indicated that WPM infestation rates declined 36–52% following ISPM15 implementation, with results varying in statistical significance depending on the selected starting parameters. Power analyses of the AQIM data indicated there was at least a 95% chance of detecting a statistically significant reduction in infestation rates if they dropped by 90% post-ISPM15, but the probability fell as the impact of ISPM15 lessened. We discuss several factors that could have reduced the apparent impact of ISPM15 on lowering WPM infestation levels, and suggest ways that ISPM15 could be improved. The paucity of international interception data impeded our ability to conduct more thorough analyses of the impact of ISPM15, and demonstrates the need for well-planned sampling programs before and after implementation of major phytosanitary policies so that their effectiveness can be assessed. We also present summary data for bark- and wood-boring insects intercepted on WPM at US ports during 1984–2008

    Economic Impacts of Non-Native Forest Insects in the Continental United States

    Get PDF
    Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly 1.7billioninlocalgovernmentexpendituresandapproximately1.7 billion in local government expenditures and approximately 830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors

    Economic Impacts of Non-Native Forest Insects in the Continental United States

    Get PDF
    Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly 1.7billioninlocalgovernmentexpendituresandapproximately1.7 billion in local government expenditures and approximately 830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    One world, many pathogens!

    Get PDF
    Forest insect and pathogen species are expanding their geographical ranges through international trade at a rate that most pest specialists and ecologists find alarming. While many invaders are relatively innocuous, several species have damaging impacts on agricultural and natural resources. Furthermore, some of these non-native pests have had catastrophic impacts on ecosystem functions when they invade native communities in which they have no prior evolutionary history. Examples include the demise of chestnut trees in North America, major losses of elms in Europe and North America, Jarrah dieback in Australia, and the devastating effects of pine wood nematode in Asia. Predicting which insects or pathogens will become most problematic and devising mitigation measures to reduce the risk of their arrival and establishment has become the ‘holy grail’ for many entomologists and plant pathologists worldwide. Analysis of historical data is an essential tool for identifying important invasion pathways and weak links in the chain of biosecurity measures that must be strengthened to protect local economies and ecosystem stability. In this issue of New Phytologist, Santini et al. (pp. 238–250), provide a comprehensive and insightful analysis of historical forest pathogen establishment and spread records from Europe. A product of a collaborative (20 nations) European Union-funded project, the paper identifies dominant plant pathogen invasion pathways and key factors predicting pathogen species invasiveness, as well as habitat characteristics that render certain regions more vulnerable to pathogen invasion. All of these associations have implications for preventing future invasions. In their paper, Santini et al. observed dramatic changes over time in the sources of forest pathogens establishing in Europe. The earliest known pathogen species establishments were largely a result of intra-European spread. North American species first trickled in during the late nineteenth century, and became even more important during the twentieth century. More recently, Asia has become a major source of pathogens. These changes reflect Europe’s expanding sphere of trading partners, particularly for live plant imports, the primary invasion pathway identified in this work and others (Kenis et al., 2007; Liebhold et al., 2012). These observations also suggest a potential ‘invasive species source depletion’ in which a long history of trade with a given source country results in early establishment of many species followed by fewer invasions as the stock of aggressive invaders becomes depleted. However, the authors correctly observe that there is danger associated with new intra- European invasions originating from previously trade-isolated member states, particularly given the lack of trade barriers currently in place within the European Union. A surprising wealth of exotic pathogen species established in Europe is documented, compared with recent reports from the United States. Aukema et al. (2010) reported only 17 non-native forest tree pathogens established in the United States, whereas Santini et al. found 60 in Europe (only 60 of the 91 pathogens alien to Europe infect forest trees, a criterion used by Aukema et al., 2010). This discrepancy suggests that either taxonomists are more diligent at describing new pathogens in Europe, or perhaps Europe’s long history of colonialism and more extensive planting of non-native trees may contribute to a heavier burden of introduced pathogens in Europe

    Science Priorities for Reducing the Threat of Invasive Species to Sustainable Forestry

    Get PDF
    Invasive species pose a major, yet poorly addressed, threat to sustainable forestry. Here we set forth an interdisciplinary science strategy of research, development, and applications to reduce this threat. To spur action by public and private entities that too often are slow, reluctant, or unable to act, we recommend (a) better integrating invasive species into sustainable forestry frameworks such as the Montréal Process and forest certification programs; (b) developing improved cost estimates to inform choices about international trade and pest suppression efforts; and (c) building distributed information systems that deliver information on risks, identification, and response strategies. To enhance the success of prevention and management actions, we recommend (a) advancing technologies for molecular identification, expert systems, and remote sensing; (b) evolving approaches for ecosystem and landscape management; and (c) better anticipating interactions between species invasions and other global change processes

    Summary data for the 13,768 interceptions of bark- and wood-infesting insects in WPM at US ports during 1984–2008 by country of origin and insect family or subfamily (Source = USDA APHIS PestID database).

    No full text
    a<p>The values for the weevil family Curculionidae do not include the two subfamilies Platypodinae and Scolytinae, which are listed separately.</p>b<p>Country codes: BE Belgium, CA Canada, CN China, DE Germany, ES Spain, FR France, GR Greece, IN India, IT Italy, MX Mexico, PT Portugal, RU Russia, and TR Turkey.</p>c<p>The category “Other” did not include 432 records for which no country of origin was listed.</p
    corecore