737 research outputs found

    Integrand reduction of one-loop scattering amplitudes through Laurent series expansion

    Get PDF
    We present a semi-analytic method for the integrand reduction of one-loop amplitudes, based on the systematic application of the Laurent expansions to the integrand-decomposition. In the asymptotic limit, the coefficients of the master integrals are the solutions of a diagonal system of equations, properly corrected by counterterms whose parametric form is konwn a priori. The Laurent expansion of the integrand is implemented through polynomial division. The extension of the integrand-reduction to the case of numerators with rank larger than the number of propagators is discussed as well.Comment: v2: Published version: references and two appendices added. v3: Eq.(6.11) corrected, Appendix B updated accordingl

    Single Cut Integration

    Get PDF
    We present an analytic technique for evaluating single cuts for one-loop integrands, where exactly one propagator is taken to be on shell. Our method extends the double-cut integration formalism of one-loop amplitudes to the single-cut case. We argue that single cuts give meaningful information about amplitudes when taken at the integrand level. We discuss applications to the computation of tadpole coefficients.Comment: v2: corrected typo in abstrac

    Temperature inversion symmetry in the Casimir effect with an antiperiodic boundary condition

    Full text link
    We present explicitly another example of a temperature inversion symmetry in the Casimir effect for a nonsymmetric boundary condition. We also give an interpretation for our result.Comment: 4 page

    Spinor formalism for massive fields with half-integral spin

    Full text link
    In this article, we extend the %Weyl-van der Waerden spinor technique for calculating helicity amplitudes to general massive fields of half-integer spins. We find that the little group generators can be represented as first-order differential operators in the spinor formalism. We use the spinor forms of the generators to get the explicit form of the massive fields of any spin and any helicity. We also deal with the three-particle S-matrix by these spinor form generators, and find that we are able to extend the explicit form of the three-particle vertex obtained by Benincasa and Cachazo to the massive case. We present the explicit expressions for the amplitudes with external particles of the lowest helicities up to -3/2. Group theory, in the form of raising operators of the little group, then dictates other amplitudes with higher helicity in the same spin multiplets. The formalism allows, in principle, to determine the electromagnetic form-factors of charged particles of arbitrary helicities, without additional assumptions about the underlying lagrangian. We find that restrictions which follow from gauge and Lorentz invariance are nearly as restrictive as in the massless case.Comment: 21 pages, 1 figure

    Optimizing the Reduction of One-Loop Amplitudes

    Get PDF
    We present an optimization of the reduction algorithm of one-loop amplitudes in terms of master integrals. It is based on the exploitation of the polynomial structure of the integrand when evaluated at values of the loop-momentum fulfilling multiple cut-conditions, as emerged in the OPP-method. The reconstruction of the polynomials, needed for the complete reduction, is rended very versatile by using a projection-technique based on the Discrete Fourier Transform. The novel implementation is applied in the context of the NLO QCD corrections to u d-bar --> W+ W- W+

    Hepta-Cuts of Two-Loop Scattering Amplitudes

    Full text link
    We present a method for the computation of hepta-cuts of two loop scattering amplitudes. Four dimensional unitarity cuts are used to factorise the integrand onto the product of six tree-level amplitudes evaluated at complex momentum values. Using Gram matrix constraints we derive a general parameterisation of the integrand which can be computed using polynomial fitting techniques. The resulting expression is further reduced to master integrals using conventional integration by parts methods. We consider both planar and non-planar topologies for 2 to 2 scattering processes and apply the method to compute hepta-cut contributions to gluon-gluon scattering in Yang-Mills theory with adjoint fermions and scalars.Comment: 37 pages, 6 figures. version 2 : minor updates, published versio
    • …
    corecore