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1. Introduction

In the last few years, we have been witnessing a boost in developing new ideas aiming to

the efficient computation of one-loop amplitudes [1], as extensively reported in [2]. Besides

standard techniques, where the tensor reduction is explicitly performed, new numerical and

analytical developments, originally inspired by unitarity arguments [3, 4] have emerged.

The common features of the so called unitarity-based methods [5 – 26], is the change of

perspective they propose: instead of focusing on the actual evaluation of complete inte-

grals, they pursue the determination of the coefficients of the scalar one-loop functions

contributing to the unknown integrals. This possibility relies on the fact that the basis

of scalar function to express any one-loop integral is known in terms of Boxes, Triangles,

Bubbles and (in massive theories) Tadpoles [27]. Schematically, one can write a Master

Equation for any one-loop amplitude M such as:

M =
∑

i

di Boxi +
∑

i

ci Trianglei +
∑

i

bi Bubblei +
∑

i

ai Tadpolei , (1.1)
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where di, ci, bi and ai are the coefficients to be determined.

Very recently in [28, 29], by exploiting the properties of spinor-integration of double-

cuts of dimensionally regulated integrals [10, 12 – 16, 15, 17], general analytic formulas

for the coefficients di, ci, bi were presented. These formulas can be evaluated as needed,

without performing any integration, by specializing the value of input variables that are

specific to the initial cut-integrand, which is assembled from tree-level amplitudes.

As an alternative to any phase-space integration, in [18, 19] there was proposed a very

efficient method for the reconstruction of the so-called 4-dimensional cut-constructible term

of any scattering amplitude (corresponding to the poly-logarithmic structure arising when

eq. (1.1) is expanded around 4-dimensions). This method, by-now known as OPP-reduction,

allows the numerical reconstruction of (the 4-dimensional limit of) the coefficients, di, ci,

bi and ai, by solving a system of algebraic equations that are obtained by: i) the numerical

evaluation of the integrand at explicit values of the loop-variable, on the one side; ii) and the

knowledge of the most general polynomial structure of the integrand itself [30], on the other

one. We remark that the values of the loop momentum used for the numerical evaluation

of the integrand are chosen among the set of solutions of the multiple-cut conditions,

namely the solutions of the system of equations obtained by imposing the vanishing of the

denominators on each 4-dimensional cut.

For the complete evaluation of scattering amplitudes, one has to consider that the

4-dimensional expansion of eq. (1.1) generates not only a poly-logarithmic term, but as

well a rational term which cannot be detected by (massless) cuts in 4-dimensions. In [21],

it has been recently shown that there are two sources of the rational terms: the first con-

tribution, that is quite simple to calculate, originates from the generic (n− 4)-dimensional

structure of the numerator of any one-loop amplitude and it can be derived by using appro-

priate Feynman rules within a tree-like computation. The second contribution originates

instead from the reduction of the 4−dimensional part of the numerator in terms of the

n−dimensional denominators appearing in the scalar integrals. This part, that is more

subtle to extract, can be computed within the OPP-method in a completely automatized

way, following one of the approaches discussed in [21] and numerically implemented in the

public code CutTools [20].

Alternatively, the reconstruction of the rational term can be achieved as well by using

techniques like direct computation [31, 32], by the bootstrapping method [33], by cuts

in n-dimensions [28, 29], or by explicitly computing the amplitude at different integer

value of the space-time dimensions [26]. In particular, in [25, 26] it has been proposed

an extension of the OPP-reduction, implementing an integrand decomposition valid in n-

dimensions, rather than in 4-dimensions, which exposed a richer, yet polynomial, structure

of the cut-integrand.

The efficiency of the OPP-reduction has been shown in non-trivial applications, like

the 6-photon amplitudes with massless and massive fermion-loop [19], the virtual QCD

correction to qq̄ → ZZZ [2], and the complete cross section for the production of three

vector bosons at LHC [34].

Within the OPP-reduction, the coefficients of the master integrals can be simply ex-

tracted by solving a system of numerical equations, rather than computing phase-space
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integrals. Cut-by-cut, in a top-down algorithm, from quadruple- to single-cut, one can

establish a system for extracting the coefficient of each master-integral identified by the

product of the cut-propagators. The general structure of the integrand [30] determines the

polynomial shape of the equations forming such a system. In fact, by decomposing the loop

variable in terms of a suitable basis of momenta (constructed from the external momenta

and arbitrarily chosen reference momenta), the cut-conditions impose kinematical bounds

on the values of the components of the loop momentum in this basis. According to the

number of cuts, some component (when not all), are completely frozen, while others re-

main as free-variables1. The integrand, evaluated at a value of the loop momentum chosen

among the solutions of a given cut, is a polynomial whose variables are the components

of the loop momentum not frozen by the cut-conditions: the zero-th order coefficient of

such a polynomial corresponds to the coefficient of the master integral one is interested in;

the other terms of the polynomial, referred to as spurious terms, do not contribute to the

cut (since they vanish upon integration), but they are needed later on for extracting the

coefficients of lower-point master integrals.

To extract all the coefficients of this polynomial, one establishes a system, as said

above, generated by evaluating numerically the integrand for values of loop momentum

chosen within the solutions of the cut-conditions (parametrized by its free-components).

The number of numerical evaluations must be the same as the number of the unknown

coefficients to be determined.

The goal of the current paper is to exploit the polynomial structure of the integrand and

the freedom in choosing the solutions of the cuts, used as numerical points for the evaluation

of the integrand, to improve the system-solving algorithm. By selecting the variables of

each polynomial to be proportional to the roots of unity, the extraction of the polynomial’s

coefficients is carried through projections, using the orthogonality relation among plane-

waves, rather than by system inversion. The basic principle underlying this procedure is

the same as for the Discrete Fourier Transform. The solutions accordingly obtained may

help in getting a substantial reduction in computing-time. The effective benefit of the new

implementation is mostly experienced for the extraction of the coefficients of the 3- and

2-point functions, since in the 4- and 1-point cases the polynomial structure is very simple:

a degree-1 polynomial, in the case of the 4-point; an effective degree-0 polynomial, in the

case of the 1-point functions.

The paper is organized as follows. In section 2, we recall the basic features of the

OPP-reduction, by classifying the polynomial structures generated by the the multiple-cut

integrand. In section 3, we introduce the projections used for extracting the coefficients out

of a polynomial, which are explicitly applied, in sections 4 and 5, for the extraction of the

coefficients of the 3- and 2-point functions, respectively. Finally, in section 6, we apply the

optimized reduction to the computation of the Next-to-Leading-Order QCD corrections to

the scattering amplitude of the process ud̄ → W+W−W+.

1The variables not frozen by the cut-conditions correspond to the integration variables of the phase-space

integral
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2. OPP-Reduction

The starting point of the OPP reduction method [18, 19] is the general expression for the

integrand of a generic m-point one-loop (sub-)amplitude that, using dimensional regular-

ization, can be written as

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 − m2
i , p0 6= 0 . (2.1)

We use a bar to denote objects living in n = 4+ǫ dimensions; therefore we have q̄2 = q2+q̃2,

where q̃2 is ǫ-dimensional and (q̃ · q) = 0. N(q) is the 4-dimensional part of the numerator

of the amplitude. If needed, the ǫ-dimensional part of the numerator should be treated

separately, as explained in [35, 21]. N(q) depends on the 4-dimensional denominators

Di = (q + pi)
2 − m2

i as follows

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i6=i0,i1,i2

Di

+

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+

m−1
∑

i0

[a(i0) + ã(q; i0)]

m−1
∏

i6=i0

Di

+P̃ (q)

m−1
∏

i

Di . (2.2)

Inserted back in eq. (2.1), this expression simply states the multi-pole nature of any m-

point one-loop amplitude, that, clearly, contains a pole for any propagator in the loop, thus

one has terms ranging from 1 to m poles.

The coefficients of the poles can be further split in two pieces. A piece that still depend

on q (the terms d̃, c̃, b̃, ã), that vanishes upon integration, and a piece that do not depend

on q (the terms d, c, b, a). Such a separation is always possible, as shown in [18], and,

with this choice, the latter set of coefficients is therefore immediately interpretable as the

ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop functions contributing

to the amplitude. Notice that the term with no poles, namely that one proportional to

P̃ (q) is polynomial and vanishes upon integration in dimensional regularization. Moreover,

it can be shown that in the renormalizable gauge P̃ (q) = 0, even before integration.

2.1 Top-down polynomial structures

Since the scalar 1-, 2-, 3-, 4-point functions are known, the problem of computing the

one-loop amplitude is simply reduced to the algebraical problem of fitting the coefficients
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d, c, b, a by evaluating the function N(q) a sufficient number of times, at different values of

q, and then inverting the system.

This task can be achieved very efficiently by singling out particular choices of q such

that, systematically, 4, 3, 2 or 1, among all possible denominators Di vanish. In [18], it

was shown that by proceeding top-down from quadruple-cuts to single-cuts, it is possible to

construct a particularly simple system of equations that can be solved analytically, whose

solutions yield the complete reconstruction of the unknown coefficients.

• Quadruple-cut. When q is solution of

D0 = D1 = D2 = D3 = 0 . (2.3)

N(q) = [d(0123) + d̃(q; 0123)]
∏

i6=0,1,2,3

Di(q) ≡ R(q)
∏

i6=0,1,2,3

Di(q) (2.4)

where R(q) has a polynomial structure with 2 terms.

• Triple-cut. At this stage all d and d̃ coefficients are known. When q is solution of

D0 = D1 = D2 = 0 and Di 6= 0 ∀i 6= 0, 1, 2 (2.5)

eq. (2.2) reads

N(q) −
∑

2<i3

[d(012i3) + d̃(q; 012i3)]
∏

i6=0,1,2,i3

Di(q)

≡ R′(q)
∏

i6=0,1,2

Di(q) = [c(012) + c̃(q; 012)]
∏

i6=0,1,2

Di(q) , (2.6)

where R′(q) has a polynomial structure with 7 terms.

• Double-cut. At this stage all d, d̃, c and c̃ coefficients are known. When q is

solution of

D0 = D1 = 0 and Di 6= 0 ∀i 6= 0, 1 (2.7)

eq. (2.2) reads

N(q) −
∑

1<i2<i3

[d(01i2i3) + d̃(q; 01i2i3)]
∏

i6=0,1,i2,i3

Di

−
∑

1<i2

[c(01i2) + c̃(q; 01i2)]
∏

i6=0,1,i2

Di

≡ R′′(q)
∏

i6=0,1

Di(q) = [b(01) + b̃(q; 01)]
∏

i6=0,1

Di(q) , (2.8)

where R′′(q) has a polynomial structure with 9 terms.

• Single-cut. In massless theories all 1-point functions, namely all tadpoles, vanish,

also implying that, in such cases, one does not need to know all the b̃ coefficients.
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However, in general, also the coefficients of the tadpoles are required. Therefore we

discuss how to extract them.

At this stage we assume to know all the d, d̃, c, c̃, b and b̃ coefficients and, when q is

solution of

D0 = 0 and Di 6= 0 ∀i 6= 0 , (2.9)

eq. (2.2) reads

N(q) −
∑

0<i1<i2<i3

[d(0i1i2i3) + d̃(q; 0i1i2i3)]
∏

i6=0,i1,i2,i3

Di

−
∑

0<i1<i2

[c(0i1i2) + c̃(q; 0i1i2)]
∏

i6=0,i1,i2

Di

−
∑

0<i1

[b(0i1) + b̃(q; 0i1)]
∏

i6=0,i1

Di

≡ R′′′(q)
∏

i6=0

Di(q) = [a(0) + ã(q; 0)]
∏

i6=0

Di(q) . (2.10)

where R′′′(q) has a polynomial structure with 5 terms. We notice that the spurious

coefficients ãi(0) (i = 1, . . . , 4) are never needed, because they would be necessary

only to extract what we called P̃ (q), that, as already observed, is irrelevant. Therefore

one focuses directly on the extraction of the tadpole-coefficient a(0).

We remark, that the polynomials we are going to deal with, i.e. R(q), R′(q), R′′(q), and

R′′′(q), share a common structure: a spurious structure, depending on the loop variable,

q, which does not contribute to the cut-integral; and a single q-independent term, which

corresponds to the actual coefficient of the master integral identified by the cuts2.

3. Polynomial structures and discrete fourier transform

After the general structure of eq. (2.2) is established, as we illustrated in the previous

section, the calculation of the scattering amplitude reduces to the problem of extracting

the coefficients of multivariable polynomials, generated at every step of the multiple-cut

analysis.

Let us show how it is possible to extract efficiently the coefficients of a polynomial of

degree n in the variable x, say Pn(x), defined as,

Pn(x) =
n

∑

ℓ=0

cℓ xℓ , (3.1)

by means of projections, according to the same principle underlying the Discrete Fourier

Transform which works as follows.

2The only exception to this pattern will be the structure of the double-cut coefficients, that also includes

a q-independent non vanishing term, in order to avoid numerical instabilities [19].
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3.1 Discrete Fourier Transform

Consider the function F , known only numerically in N points, Fn (n = 0, . . . , N −1). Each

of this values, admits a DFT, defined as,

Fn ≡
N−1
∑

k=0

fk e−2πi k

N
n . (3.2)

The coefficients fk, can be found by using the orthogonality relation,

N−1
∑

n=0

e2πi k

N
n e−2πi k

′

N
n = N δkk′ . (3.3)

with the result

fk =
1

N

N−1
∑

n=0

Fn e2πi k

N
n . (3.4)

3.2 Projections

Let us see how the above procedure can be implemented for extracting the coefficients cℓ’s

of the polynomial in eq. (3.1) by projections.

1. Generate the set of discrete values gk (k = 0, . . . , n),

gk = Pn(xk) =

n
∑

ℓ=0

cℓ ρℓ e
−2πi k

(n+1)
ℓ
, (3.5)

by evaluating Pn(x) at the points

xk = ρ e
−2πi k

(n+1) . (3.6)

2. Using the orthogonality relations for the wave planes, one can obtain the coefficient

cℓ simply by,

cℓ =
ρ−ℓ

n + 1

n
∑

k=0

gk e
2πi k

(n+1)
ℓ

(3.7)

This procedure is very general and can be applied as long as one needs to know the

coefficients of any polynomial. In fact, it has been recently suggested in [29], for computing

the coefficients of polynomials in the (−2ǫ)-dimensional mass parameter.

The projections could be extended also to the case of multi-variables polynomials, along

the same line of the multi-dimensional DFT. Since we aim to minimize the computational

load, we keep the number of numerical evaluations of each polynomial to be the same as the

number of its coefficients. To this aim, we will see that the coefficients of a multi-variable

polynomial can be equivalently found by breaking it in several one-variable polynomials,

obtained from the former by freezing the values of the other variables, yielding still the use

of the (one-dimensional) projections described above.

– 7 –



J
H
E
P
0
6
(
2
0
0
8
)
0
3
0

The next two sections will be devoted to the application of the projection procedure

for the extraction of the coefficients of the 3- and 2-point functions, respectively out of

R′(q), and R′′(q). We won’t discuss hereby the reconstruction of the coefficients of the 4-

and 1-point functions, because the polynomial structures of R(q) and R′′′(q) is very simple,

and the result of the projection procedure would be the same as the one given in [18].

4. The coefficient of the 3-point functions

In this section, we show how to apply the properties of orthogonal functions for extracting

the coefficient of the 3-point functions.

Let’s begin from eq. (2.21) of [18],

R′(q) = c(012) +

3
∑

j=1

{

c̃1j(012)[(q + p0) · ℓ3]
j + c̃2j(012)[(q + p0) · ℓ4]

j
}

(4.1)

where R′(q) appeared in eq. (2.6). By substituting the parametrization of q, solution of

the triple-cut conditions given in [18], and recalled in appendix A,

q = −p0 + x1ℓ1 + x2ℓ2 + x3ℓ3 + x4ℓ4 (4.2)

one obtains

R′(q) = c(012) +
3

∑

j=1

{

c̃1j(012) (ℓ3 · ℓ4)
j xj

4 + c̃2j(012) (ℓ3 · ℓ4)
j xj

3

}

, (4.3)

This expression can be read as a polynomial in x3 and x4, whose canonical form reads,

P (x3, x4) = c0,0 + c1,0 x3 + c2,0 x2
3 + c3,0 x3

3 + c0,1 x4 + c0,2 x2
4 + c0,3 x3

4 (4.4)

with the following relations among the coefficients

c0,0 = c(012) ,

cj,0 = c2j(012) (ℓ3 · ℓ4)
j

c0,j = c1j(012) (ℓ3 · ℓ4)
j (4.5)

Therefore computing the OPP-coefficients is equivalent to the computation of the 7 coeffi-

cients of eq. (4.4).

4.1 Projections

The extraction of the coefficients ci,j is performed, in the framework of the original OPP-

method and in CutTools, by choosing a redundant set of solutions in order to avoid some

fake singularities occurring in kinematical points in which C = 0. In practice, this is

obtained by doubling the number of calls to the numerator function N(q), by roughly

doubling the computation time. The same problem can be more efficiently solved with the

help of the proposed projection method. By using it, it is in fact very easy to find a set of

– 8 –
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solutions for which the point C = 0 is never singular and for which N(q) is called just as

many times as the number of needed coefficients. This is done at the price of creating a

new fake singularity at C = 1, but, when this situation occurrs, one can use the original

solution. The described procedure explicitly shows the flexibility of the proposed projection

method.

To extract the 7 coefficients cij by projections, we take 7 values of P , grouped in 2

sets (4 + 3),

g1,k = P (x3k, x4k) , x3k = C e−2πi k

4 , x4k = e2πi k

4 , (k = 0, 1, 2, 3)

g2,k = P (x3k, x4k) , x3k = e−2πi k

3 , x4k = C e2πi k

3 , (k = 0, 1, 2) (4.6)

where C is given in appendix A.

Then, we construct the auxiliary functions

µ(1,m, n) =
1

4

3
∑

k=0

g1,k e2πi k

4
(m−n) (4.7)

with: (m,n) = (0, 0), (0, 1), (0, 2), (1, 0).

µ(2,m, n) =
1

3

2
∑

k=0

g2,k e2πi k

3
(m−n) (4.8)

with: (m,n) = (0, 0), (0, 1), (1, 0).

In terms of these auxiliary functions, the coefficients read,

c0,0 = µ(1, 0, 0) (4.9)

c1,0 = − 1

C12 − 1
(−µ(1, 1, 0)C11 − µ(1, 0, 0)C8 + µ(2, 0, 0)C8 − µ(1, 0, 1)C5 + µ(2, 0, 1)C4

−µ(1, 0, 2)C2 + µ(2, 1, 0)) (4.10)

c2,0 = − 1

C12 − 1
(−µ(1, 0, 2)C10 + µ(2, 1, 0)C8 − µ(1, 1, 0)C7 − µ(1, 0, 0)C4

+µ(2, 0, 0)C4 − µ(1, 0, 1)C + µ(2, 0, 1)) (4.11)

c3,0 = − 1

C12 − 1
(−µ(1, 0, 1)C9 + µ(2, 0, 1)C8 − µ(1, 0, 2)C6 + µ(2, 1, 0)C4

−µ(1, 1, 0)C3 − µ(1, 0, 0) + µ(2, 0, 0)) (4.12)

c0,1 = − 1

C12 − 1
(−µ(2, 0, 1)C11 + µ(1, 0, 2)C9 − µ(2, 1, 0)C7 + µ(1, 1, 0)C6 + µ(1, 0, 0)C3

−µ(2, 0, 0)C3 + µ(1, 0, 1)) (4.13)

c0,2 = − 1

C12 − 1
(−µ(2, 1, 0)C10 + µ(1, 1, 0)C9 + µ(1, 0, 0)C6 − µ(2, 0, 0)C6 + µ(1, 0, 1)C3

−µ(2, 0, 1)C2 + µ(1, 0, 2)) (4.14)

c0,3 = − 1

C12 − 1
(µ(1, 0, 0)C9 − µ(2, 0, 0)C9 + µ(1, 0, 1)C6 − µ(2, 0, 1)C5 + µ(1, 0, 2)C3

−µ(2, 1, 0)C + µ(1, 1, 0)) (4.15)

Finally, to obtain the OPP-coefficients, simply use eqs. (4.5).

– 9 –
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5. The coefficient of the 2-point functions

In this section, we show how to apply the properties of orthogonal functions for extracting

the coefficient of the 2-point functions.

Let’s begin from eq. (B.7) of [19]

R′′(q) = b + b̂0[(q + p0) · v] + b̂00[(q + p0) · v]2

+b̃11[(q + p0) · ℓ7] + b̃21[(q + p0) · ℓ8]

+b̃12[(q + p0) · ℓ7]
2 + b̃22[(q + p0) · ℓ8]

2

+b̃01[(q + p0) · ℓ7][(q + p0) · v] + b̃02[(q + p0) · ℓ8][(q + p0) · v] (5.1)

where R′′(q) appeared in eq. (2.8). By substituting the parametrization of q, the solution

of the double-cut conditions given in eq. (B.6) of [19], and recalled in appendix B,

q = −p0 + yk1 + yvv + y7ℓ7 + x8ℓ8 (5.2)

one obtains

N(q) = b + b̂0[yk1 · v] + b̂00[yk1 · v]2

+b̃11[y8ℓ8 · ℓ7] + b̃21[y7ℓ7 · ℓ8]

+b̃12[y8ℓ8 · ℓ7]
2 + b̃22[y7ℓ7 · ℓ8]

2

+b̃01[y8ℓ8 · ℓ7][yk1 · v] + b̃02[y7ℓ7 · ℓ8][yk1 · v] (5.3)

This expression can be read as a polynomial in y, y7 and y8, whose canonical form reads,

P (y, y7, y8) = a000 + a100 y + a200 y2

+a010 y7 + a020 y2
7 + a001 y8 + a002 y2

8

+a110 y y7 + a101 y y8 , (5.4)

with the following relations among the coefficients

a000 = b

a100 = b̂0(k1 · v)

a200 = b̂00(k1 · v)2

a010 = b̃21(ℓ7 · ℓ8)

a020 = b̃22(ℓ7 · ℓ8)
2

a001 = b̃11(ℓ7 · ℓ8)

a002 = b̃12(ℓ7 · ℓ8)
2

a110 = b̃02(ℓ7 · ℓ8)(k1 · v)

a101 = b̃01(ℓ7 · ℓ8)(k1 · v) (5.5)

– 10 –
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5.1 Projections

Here we explicitly illustrate a solution that avoids the problem of doubling the number

of calls to the numerator function N(q) (used in the original implementation of the OPP-

method) due to the appearence of fake singularities when F0 = 0.

To extract the 9 coefficients aijk by projections, we take 9 values of P , grouped in 5

sets (3 + 2 + 2 + 1 + 1),

g00h = P (0, y7h, y8h) , y = 0, y7h = F0 e−2πi h

3 , y8h = e2πi h

3 , (h = 0, 1, 2)

g0h0 = P (0, y7h, y8h) , y = 0 , y7h = e−2πi h

2 , y8h = F0 e2πi h

2 (h = 0, 1)

g−10h = P (−1, y7h, y8h) , y = −1 , y7h = F−1 e−2πi h

2 , y8h = e2πi h

2 (h = 0, 1)

g−1 = P (−1, 1, F−1) , y = −1 , y7 = 1 , y8 = F−1

g1 = P (1, F1, 1) , y = 1 , y7 = F1 , y8 = 1 (5.6)

where the definition of Fy is given in appendix B.

Then, we construct the auxiliary functions

µ(1, 0,m, n) =
1

3

2
∑

h=0

g00h e2πi h

3
(m−n) , (m,n) = (0, 0), (0, 1), (1, 0) (5.7)

µ(2, 0,m, n) =
1

2

1
∑

h=0

g0h0 e2πi h

2
(m−n) , (m,n) = (0, 0), (1, 0) (5.8)

µ(1,−1,m, n) =
1

2

1
∑

h=0

g−10h e2πi h

2
(m−n) , (m,n) = (0, 0), (0, 1) (5.9)

µ(2,−1, 0, 0) = g−1 (5.10)

µ(1, 1, 0, 0) = g1 (5.11)

The coefficients can be expressed as linear combinations of these auxiliary functions. Since

the expressions for generic values of F0, F−1, F1 are rather long, we present the one obtained

when F0 = F−1 = 0, which happens when the propagators are massless, as in the case of

the application later discussed. Hence, the coefficients read,

a000 = µ(1, 0, 0, 0) (5.12)

a100 =
1

2
(µ(1, 0, 0, 0)F 2

1 − µ(2, 0, 0, 0)F 2
1 − µ(1,−1, 0, 0)F1 + µ(1, 0, 0, 0)F1

+µ(1, 0, 1, 0)F1 + µ(2,−1, 0, 0)F1 − µ(2, 0, 0, 0)F1 − 2µ(2, 0, 1, 0)F1

−µ(1,−1, 0, 0) + µ(1,−1, 0, 1) − 2µ(1, 0, 0, 1) + µ(1, 1, 0, 0)), (5.13)

a200 =
1

2
(µ(1, 0, 0, 0)F 2

1 − µ(2, 0, 0, 0)F 2
1 − µ(1,−1, 0, 0)F1 + µ(1, 0, 0, 0)F1

+µ(1, 0, 1, 0)F1 + µ(2,−1, 0, 0)F1 − µ(2, 0, 0, 0)F1 − 2µ(2, 0, 1, 0)F1

+µ(1,−1, 0, 0) + µ(1,−1, 0, 1) − 2µ(1, 0, 0, 0)

−2µ(1, 0, 0, 1) − 2µ(1, 0, 1, 0) + µ(1, 1, 0, 0)), (5.14)

a010 = µ(2, 0, 1, 0), (5.15)

– 11 –
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Figure 1: Box and pentagon diagrams contributing to virtual QCD corrections to ud̄ →
W+W−W+. Wavy lines can be either Z or photons, dashed lines represent W+ and W−. Di-

agrams involving an exchange in the two final W+ should also be considered.

a020 = µ(2, 0, 0, 0) − µ(1, 0, 0, 0), (5.16)

a001 = µ(1, 0, 0, 1), (5.17)

a002 = µ(1, 0, 1, 0), (5.18)

a110 = µ(1,−1, 0, 0) − µ(1, 0, 0, 0) − µ(1, 0, 1, 0) − µ(2,−1, 0, 0) + µ(2, 0, 0, 0)

+µ(2, 0, 1, 0), (5.19)

a101 = µ(1, 0, 0, 1) − µ(1,−1, 0, 1) . (5.20)

Finally, to obtain the OPP-coefficients, simply use eqs. (5.5)

6. An example: QCD virtual corrections to ud̄ → W
+

W
−

W
+ at NLO

As an example of application of the optimized algorithm, we present the results for the

pentagon and box diagrams contributing to the scattering amplitudes of ud̄ → W+W−W+

at NLO in QCD. The complete cross section for the production of W+W−W+ at LHC, as

well as W+W−Z, W+ZZ and ZZZ is presented in [34].

The main purpose of this application is to test the improvements on the OPP-reduction

algorithm, both in terms of stability and efficiency, after the changes proposed in this paper

have been included.

The complete calculation of NLO QCD virtual correction to ud̄ → W+W−W+, ne-

glecting the contributions that depend on the Higgs boson, involves the reduction of 53

diagrams. The topologies of pentagon and box diagrams contributing to this process are

depicted in figure 1. Overall, we have 2 pentagons and 12 boxes.

Most of the computing time in the calculation is spent in the evaluation of the coef-

ficients for 3-point and 2-point scalar function arising from the reduction of the diagrams

illustrated. For example, the reduction of the each pentagon implies the evaluation of ten

sets of c-type coefficients and ten sets of b-type coefficients, involving each seven and nine

coefficients respectively. It is therefore very important to have efficient routines to achieve

this task. As a comparison, the evaluation of the d-type coefficients is only performed five

times for each pentagon and involves only two coefficients.

For the purpose of this test, we fix the external momenta to the specific phase-space

configuration of eq. (6.1) and the polarization vectors for the vector bosons. To perform

the calculation, we use the OPP-reduction method, with and without the optimization tech-

nique illustrated before. The coefficients determined in this manner should be multiplied

– 12 –
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Polarization |A|
0 0 0 28.2435

0 0 − 5.13851

0 0 + 10.7870

0 − 0 1.923741

0 − + 0.718415

0 + 0 7.43599

0 + − 1.95506

− + − 0.276058

− + + 0.402302

+ + + 0.875457

Table 1: Absolute value of the amplitudes for different configurations of the polarization of the vec-

tor bosons (accounting for 5-point and 4-point Feynman diagrams only). The results are expressed

in unit of e3.

by the corresponding scalar integrals. Since, in the process that we are studying, no q-

dependent massive propagator appears, we will only need massless scalar integrals. They

are computed using the package OneLOop written by A. van Hameren [36]. Finally, we sum

the contributions coming from the various pentagons and boxes: the results obtained are

presented in table 1.

p1 = {500, 0, 500, 0}
p2 = {500, 0,−500, 0}
p3 = {276.212, 97.7237,−56.2856, 238.9792}
p4 = {486.8926, 213.4030, 37.7214,−428.5282}
p5 = p1 + p2 − p3 − p4 (6.1)

The results obtained with the two different implementations of the algorithm are, of course,

in perfect agreement. However, with the optimized version we can roughly improve the

efficiency by a factor 2. As a first test, we checked the improvements on the timing of the

two new routines alone, separating them from the rest of the reduction. We experience

a reduction in the computing time of about 60% for the system of the c-coefficients, and

about 50% for the system of the b-coefficient.

In the overall evaluation of the amplitudes, the optimized routines are combined with

other parts of the program that remain unchanged. This involves, for example, the ini-

tialization, the evaluation of scalar integrals, the evaluation of d- and a-coefficients and

rational parts, and the summing over all contributions. We still retain, however, an overall

improvement in the computing time of about 40%.

Concerning the stability issues, we tested the new routines for a wide set of phase-space

points. We do not observe significant improvements respect to the previous implementation.

– 13 –
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7. Conclusions

We presented an optimization of the reduction algorithm of one-loop amplitudes in terms

of master integrals. That is based on the exploitation of the polynomial structure of the

integrand when evaluated at values of the loop-momentum fulfilling multiple cut-conditions,

as emerged in the OPP-method. Accordingly, the integrand, evaluated at a value of the loop

momentum chosen among the solutions of a given cut, is a polynomial whose variables are

the components of the loop momentum not frozen by the cut-conditions: the zero-th order

coefficient of such a polynomial corresponds to the coefficient of the master integral one is

interested in; the other terms of the polynomial, though not contributing to the cut, are

needed for the later determination of the coefficients of lower-point master integrals.

To extract all the polynomial coefficients, one establishes a system generated by eval-

uating numerically the integrand for values of loop variable chosen within the solutions

of the cut-conditions (parametrized by its free-components). The freedom in choosing the

solutions of the cuts has been hereby exploited to improve the system-solving algorithm.

By selecting the variables of each polynomial to be proportional to the primitive roots of

unity, the extraction of the polynomial’s coefficients is carried through projections, using

the same orthogonality relation underlying the Discrete Fourier Transform. The number

of numerical evaluations is kept as low as the number of the unknown coefficients to be

determined, by using one-dimensional projections also in case of polynomials in more than

one-variable.

The novel implementation was applied to the reduction of the 4- and 5-point one-loop

Feynman diagrams contributing the NLO QCD corrections to ud̄ → W+W−W+, where

we experienced a reduction of the computational load.

The flexibility of the projection-procedure hereby presented extends its range of appli-

cability to tackle the determination of the coefficients of polynomial structures wherever

should this issue occur. Moreover, we finally remark that the parametrization of the free

(integration) variables as complex unitary phases yields as well a very effective performance

of Cauchy’s residue theorem within the contexts of factorization- and unitarity-based meth-

ods, where the on-shellness properties are naturally captured by polar structures in complex

phases.
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A. The basis for the 3-point functions

The loop momentum solution of the triple-cut, given in eq. (4.2), is expressed in terms of

auxiliary vectors defined as follows.

ℓ1 and ℓ2 are massless 4-vector satisfying the relations

k1 = ℓ1 + α1ℓ2 , k2 = ℓ2 + α2ℓ1 , (A.1)

with

ki = pi − p0 . (A.2)

Furthermore, in spinorial notation,

ℓµ
3 = 〈ℓ1|γµ|ℓ2] , ℓµ

4 = 〈ℓ2|γµ|ℓ1] with (ℓ3 · ℓ4) = −4(ℓ1 · ℓ2) . (A.3)

The solution to eq. (A.1) reads

ℓ1 = β(k1 − α1k2) , ℓ2 = β(k2 − α2k1) ,

β = 1/(1 − α1α2) , αi =
k2

i

γ
,

γ ≡ 2(ℓ1 · ℓ2) = (k1 · k2) ±
√

∆ , ∆ = (k1 · k2)
2 − k2

1k
2
2 . (A.4)

we decompose qµ + pµ
0 in the basis formed by ℓ1, ℓ2, ℓ3, and ℓ4,

q = −p0 + x1ℓ1 + x2ℓ2 + x3ℓ3 + x4ℓ4 , (A.5)

which is solution of the triple-cut,

D0 = D1 = D2 = 0 . (A.6)

Due to the above constrains, the coefficients of the loop decomposition must fulfill the

following relations,

x1 =
β

γ
[d2 − α2d1 − d0(1 − α2)] , (A.7)

x2 =
β

γ
[d1 − α1d2 − d0(1 − α1)] , (A.8)

x3 x4 = C , (A.9)

where

C =
1

4

(

x1x2 −
d0

γ

)

, (A.10)

di ≡ m2
i − k2

i . (A.11)
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B. The basis for the 2-point functions

First, we introduce a massless arbitrary 4-vector v, such that (v · k1) 6= 0, that we use to

rewrite k1 in terms of two massless 4-vectors (we also take ℓ2 = 0)

k1 = ℓ + α v , (B.1)

giving

γ ≡ 2 (k1 · v) = 2 (ℓ · v) and α =
k2
1

γ
. (B.2)

Then, we introduce two additional independent massless 4-vectors ℓ7,8 defined as

ℓµ
7 = 〈ℓ|γµ|v] , ℓµ

8 = 〈v|γµ|ℓ] , (B.3)

for which one finds

(ℓ7 · ℓ8) = −2γ , (B.4)

and we decompose qµ + pµ
0 in the basis formed by k1, v, ℓ7 and ℓ8

qµ = −pµ
0 + ykµ

1 + yvv
µ + y7ℓ

µ
7 + y8ℓ

µ
8 , (B.5)

that fulfill the double-cut requirement

D0 = D1 = 0 . (B.6)

For a q written as in eq. (B.5) this implies the system

y7y8 = Fy

yv =
d1 − d0 − 2yk2

1

γ
, (B.7)

where

Fy = − 1

4γ

(

m2
0 − y (d1 − d0) + y2k2

1

)

. (B.8)

We remark that when m0 = 0, Fy vanishes for y = −1, 0.
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