35 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial-mesenchymal transition

    No full text
    Significance: Machine learning is increasingly being applied to the classification of microscopic data. In order to detect some complex and dynamic cellular processes, time-resolved live-cell imaging might be necessary. Incorporating the temporal information into the classification process may allow for a better and more specific classification. Aim: We propose a methodology for cell classification based on the time-lapse quantitative phase images (QPIs) gained by digital holographic microscopy (DHM) with the goal of increasing performance of classification of dynamic cellular processes. Approach: The methodology was demonstrated by studying epithelial-mesenchymal transition (EMT) which entails major and distinct time-dependent morphological changes. The time-lapse QPIs of EMT were obtained over a 48-h period and specific novel features representing the dynamic cell behavior were extracted. The two distinct end-state phenotypes were classified by several supervised machine learning algorithms and the results were compared with the classification performed on single-time-point images. Results: In comparison to the single-time-point approach, our data suggest the incorporation of temporal information into the classification of cell phenotypes during EMT improves performance by nearly 9% in terms of accuracy, and further indicate the potential of DHM to monitor cellular morphological changes. Conclusions: Proposed approach based on the time-lapse images gained by DHM could improve the monitoring of live cell behavior in an automated fashion and could be further developed into a tool for high-throughput automated analysis of unique cell behavior. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License

    Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I

    No full text
    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo

    DVL1 is recruited to the rRNA gene cassette upon Wnt5a signaling, while SIRT7 levels are reduced.

    No full text
    <p><b>(a)</b> Chromatin immunoprecipitation (ChIP) and qPCR analysis of DVL1 and UBF on rDNA chromatin isolated from MCF7 cells (Ctrl) and MCF7 cells stably expressing Wnt5a (Wnt5a). The rRNA gene promoter, 18S rDNA and 28S rDNA repeat, and IGSs were analyzed separately using antibodies against DVL1 and UBF (as indicated below the bar graphs). Values are presented as the percentage of input signal measured for each primer pair. Error bars indicate ± SD. (n = 3). <b>(b)</b> Equivalent ChIP and qPCR analysis of Pol I and UBF on chromatin isolated from the same cells. Error bars indicate ± SD (n = 3). <b>(c)</b> Equivalent ChIP and qPCR analysis of SIRT7 and H3K4me3 on chromatin isolated from the same cells. Error bars indicate ± SD. (n = 3). <b>(d)</b> Co-immunoprecipitation of DVL1 and SIRT7 with UBF from nuclear protein extracts of MCF7 cells (MCF7/Ctrl) or MCF7 cells stably expressing Wnt5a (MCF7/Wnt5a). Bound proteins were detected on immunoblots with antibodies against UBF, DVL1 and SIRT7. 12% of the input material is shown in Lanes 1 and 5, and 6% in Lanes 2 and 6. IP, immunoprecipitation; IB, immunoblotting. <b>(e)</b> Co-immunoprecipitation of DVL1 and UBF with Pol I from nuclear protein extracts of MCF7 cells (MCF7/Ctrl) or MCF7 cells stably expressing Wnt5a (MCF7/Wnt5a). Bound proteins were detected on immunoblots with antibodies against UBF and DVL1. Approximately 12% and 6% of the input material is shown in Lanes 1 and 5, and 2 and 6, respectively. IP, immuno-precipitation; IB, immuno-blotting (n = 3).</p
    corecore