10 research outputs found

    Valkai András (1540–1586) Báthory-genealógiája. Báthory István király mint az Árpádok leszármazottja

    Get PDF
    Purpose Heat adaptation (HA) is critical to performance and health in a hot environment. Transition from short-term heat acclimatisation (STHA) to long-term heat acclimatisation (LTHA) is characterised by decreased autonomic disturbance and increased protection from thermal injury. A standard heat tolerance test (HTT) is recommended for validating exercise performance status, but any role in distinguishing STHA from LTHA is unreported. The aims of this study were to (1) define performance status by serial HTT during structured natural HA, (2) evaluate surrogate markers of autonomic activation, including heart rate variability (HRV), in relation to HA status. Methods Participants (n = 13) were assessed by HTT (60-min block-stepping, 50% VO2peak) during STHA (Day 2, 6 and 9) and LTHA (Day 23). Core temperature (Tc) and heart rate (HR) were measured every 5 min. Sampling for HRV indices (RMSSD, LF:HF) and sympathoadrenal blood measures (cortisol, nephrines) was undertaken before and after (POST) each HTT. Results Significant (P < 0.05) interactions existed for Tc, logLF:HF, cortisol and nephrines (two-way ANOVA; HTT by Day). Relative to LTHA, POST results differed significantly for Tc (Day 2, 6 and 9), HR (Day 2), logRMSSD (Day 2 and Day 6), logLF:HF (Day 2 and Day 6), cortisol (Day 2) and nephrines (Day 2 and Day 9). POST differences in HRV (Day 6 vs. 23) were + 9.9% (logRMSSD) and − 18.6% (logLF:HF). Conclusions Early reductions in HR and cortisol characterised STHA, whereas LTHA showed diminished excitability by Tc, HRV and nephrine measures. Measurement of HRV may have potential to aid real-time assessment of readiness for activity in the heat

    Nutritional status and the gonadotrophic response to a polar expedition.

    Get PDF
    Polar expeditions have been associated with changes in the hypothalamic-pituitary-testicular axis consistent with central hypogonadism (i.e., decreased testosterone, luteinising hormone (LH), and follicle stimulating hormone (FSH)). These changes are typically associated with body mass loss. Our aim was to evaluate whether maintenance of body mass during a polar expedition could mitigate against the development of central hypogonadism. Male participants (n = 22) from a 42-day expedition (British Services Antarctic Expedition 2012) volunteered to take part in the study. Body mass, body composition, and strength data were recorded pre- and postexpedition in addition to assessment of serum testosterone, LH, FSH, thyroid hormones, insulin-like growth factor 1 (IGF-1), and trace elements. Energy provision and energy expenditure were assessed at mid- and end-expedition. Daily energy provision was 6335 ± 149 kcal·day(-1). Estimated energy expenditure midexpedition was 5783 ± 1690 kcal·day(-1). Body mass and percentage body fat did not change between pre- and postexpedition. Total testosterone (nmol·L(-1)) (14.0 ± 4.9 vs. 17.3 ± 4.0, p = 0.006), calculated free testosterone (pmol·L(-1)) (288 ± 82 vs. 350 ± 70, p = 0.003), and sex hormone binding globulin (nmol·L(-1)) (33 ± 12 vs. 36 ± 11, p = 0.023) concentrations increased. LH and FSH remained unchanged. Thyroid stimulating hormone (TSH; IU·L(-1)) (2.1 ± 0.8 vs. 4.1 ± 2.1, p < 0.001) and free triiodothyronine (FT3; IU·L(-1)) (5.4 ± 0.4 vs. 6.1 ± 0.8, p < 0.001) increased while free thyroxine, IGF-1, and trace elements remained unchanged. Hand-grip strength was reduced postexpedition but static lift strength was maintained. Maintenance of body mass and nutritional status appeared to negate the central hypogonadism previously reported from polar expeditions. The elevated TSH and free FT3 were consistent with a previously reported "polar T3 syndrome"
    corecore