30 research outputs found

    Genomic epidemiological analysis identifies high relapse among individuals with recurring tuberculosis and provides evidence of household recent TB transmission in Ghana

    Get PDF
    OBJECTIVE: We investigated the cause of recurring tuberculosis (rcTB) among pulmonary TB participants recruited from a prospective population-based study conducted between July 2012 and December 2015. METHODS: Mycobacterium tuberculosis complex isolates obtained from rcTB cases were characterized by standard mycobacterial genotyping tools in addition to whole genome sequencing, followed by phylogenetic analysis to assess strain relatedness. RESULTS: A greater proportion (58.3%, 21/36) of individuals with rcTB episodes had TB recurrence within 12 months post treatment. Only 19.4% (7/36) of participants with rcTB harbored a strain with isoniazid (INH) resistance at baseline of which 29% (2/7) were additionally resistant to rifampicin. However, 27.8% (10/36) harbored an INH resistant strain upon recurring of which 40% (4/10) were MDR-TB strains. Recurrent TB was attributed to relapse (same strain) in 75.0% (27/36) of participants with 25.0% (9/36) attributed to re-infection. CONCLUSION: Our findings indicate that unresolved previous infection due to inadequate treatment may be the major cause of rcTB

    Multiple introductions of Mycobacterium tuberculosis lineage 2-Beijing into Africa over centuries

    Get PDF
    The Lineage 2–Beijing (L2–Beijing) sub-lineage of Mycobacterium tuberculosis has received much attention due to its high virulence, fast disease progression, and association with antibiotic resistance. Despite several reports of the recent emergence of L2–Beijing in Africa, no study has investigated the evolutionary history of this sub-lineage on the continent. In this study, we used whole genome sequences of 781 L2 clinical strains from 14 geographical regions globally distributed to investigate the origins and onward spread of this lineage in Africa. Our results reveal multiple introductions of L2–Beijing into Africa linked to independent bacterial populations from East- and Southeast Asia. Bayesian analyses further indicate that these introductions occurred during the past 300 years, with most of these events pre-dating the antibiotic era. Hence, the success of L2–Beijing in Africa is most likely due to its hypervirulence and high transmissibility rather than drug resistance

    Local adaptation in populations of Mycobacterium tuberculosis endemic to the Indian Ocean Rim

    Get PDF
    Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics . For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans

    Clinical isolates of the modern Mycobacterium tuberculosis lineage 4 evade host defense in human macrophages through eluding IL-1\u3b2-induced autophagy article

    Get PDF
    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected over 1.7 billion people worldwide and causes 1.4 million deaths annually. Recently, genome sequence analysis has allowed the reconstruction of Mycobacterium tuberculosis complex (MTBC) evolution, with the identification of seven phylogeographic lineages: four referred to as evolutionarily "ancient", and three "modern". The MTBC strains belonging to "modern" lineages appear to show enhanced virulence that may have warranted improved transmission in humans over ancient lineages through molecular mechanisms that remain to be fully characterized. To evaluate the impact of MTBC genetic diversity on the innate immune response, we analyzed intracellular bacterial replication, inflammatory cytokine levels, and autophagy response in human primary macrophages infected with MTBC clinical isolates belonging to the ancient lineages 1 and 5, and the modern lineage 4. We show that, when compared to ancient lineage 1 and 5, MTBC strains belonging to modern lineage 4 show a higher rate of replication, associated to a significant production of proinflammatory cytokines (IL-1\u3b2, IL-6, and TNF-\u3b1) and induction of a functional autophagy process. Interestingly, we found that the increased autophagic flux observed in macrophages infected with modern MTBC is due to an autocrine activity of the proinflammatory cytokine IL-1\u3b2, since autophagosome maturation is blocked by an interleukin-1 receptor antagonist. Unexpectedly, IL-1\u3b2-induced autophagy is not disadvantageous for the survival of modern Mtb strains, which reside within Rab5-positive phagosomal vesicles and avoid autophagosome engulfment. Altogether, these results suggest that autophagy triggered by inflammatory cytokines is compatible with a high rate of intracellular bacilli replication and may therefore contribute to the increased pathogenicity of the modern MTBC lineages

    Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

    Get PDF
    Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.We thank S. Lecher, S. Li and J. Zallet for technical support. Calculations were performed at the sciCORE scientific computing core facility at the University of Basel. This work was supported by the Swiss National Science Foundation (grants 310030_166687 (S.G.) and 320030_153442 (M.E.) and Swiss HIV Cohort Study grant 740 to L.F.), the European Research Council (309540-EVODRTB to S.G.), TB-PAN-NET (FP7-223681 to S.N.), PathoNgenTrace projects (FP7-278864-2 to S.N.), SystemsX.ch (S.G.), the German Center for Infection Research (DZIF; S.N.), the Novartis Foundation (S.G.), the Natural Science Foundation of China (91631301 to Q.G.), and the National Institute of Allergy and Infectious Diseases (5U01-AI069924-05) of the US National Institutes of Health (M.E.)

    The molecular clock of Mycobacterium tuberculosis

    Get PDF
    The molecular clock and its phylogenetic applications to genomic data have changed how we study and understand one of the major human pathogens, Mycobacterium tuberculosis (MTB), the etiologic agent of tuberculosis. Genome sequences of MTB strains sampled at different times are increasingly used to infer when a particular outbreak begun, when a drug-resistant clone appeared and expanded, or when a strain was introduced into a specific region. Despite the growing importance of the molecular clock in tuberculosis research, there is a lack of consensus as to whether MTB displays a clocklike behavior and about its rate of evolution. Here we performed a systematic study of the molecular clock of MTB on a large genomic data set (6,285 strains), covering different epidemiological settings and most of the known global diversity. We found that sampling times below 15-20 years were often insufficient to calibrate the clock of MTB. For data sets where such calibration was possible, we obtained a clock rate between 1x10-8 and 5x10-7 nucleotide changes per-site-per-year (0.04-2.2 SNPs per-genome-per-year), with substantial differences between clades. These estimates were not strongly dependent on the time of the calibration points as they changed only marginally when we used epidemiological isolates (sampled in the last 40 years) or three ancient DNA samples (about 1,000 years old) to calibrate the tree. Additionally, the uncertainty and the discrepancies in the results of different methods were sometimes large, highlighting the importance of using different methods, and of considering carefully their assumptions and limitations

    Long-term dominance of Mycobacterium tuberculosis Uganda family in peri-urban Kampala-Uganda is not associated with cavitary disease

    Get PDF
    Previous studies have shown that Mycobacterium tuberculosis (MTB) Uganda family, a sub-lineage of the MTB Lineage 4, is the main cause of tuberculosis (TB) in Uganda. Using a well characterized patient population, this study sought to determine whether there are clinical and patient characteristics associated with the success of the MTB Uganda family in Kampala.; A total of 1,746 MTB clinical isolates collected from1992-2009 in a household contact study were genotyped. Genotyping was performed using Single Nucleotide Polymorphic (SNP) markers specific for the MTB Uganda family, other Lineage 4 strains, and Lineage 3, respectively. Out of 1,746 isolates, 1,213 were from patients with detailed clinical data. These data were used to seek associations between MTB lineage/sub-lineage and patient phenotypes.; Three MTB lineages were found to dominate the MTB population in Kampala during the last two decades. Overall, MTB Uganda accounted for 63% (1,092/1,746) of all cases, followed by other Lineage 4 strains accounting for 22% (394/1,746), and Lineage 3 for 11% (187/1,746) of cases, respectively. Seventy-three (4 %) strains remained unclassified. Our longitudinal data showed that MTB Uganda family occurred at the highest frequency during the whole study period, followed by other Lineage 4 strains and Lineage 3. To explore whether the long-term success of MTB Uganda family was due to increased virulence, we used cavitary disease as a proxy, as this form of TB is the most transmissible. Multivariate analysis revealed that even though cavitary disease was associated with known risk factors such as smoking (adjusted odds ratio (aOR) 4.8, 95% confidence interval (CI) 3.33-6.84) and low income (aOR 2.1, 95% CI 1.47-3.01), no association was found between MTB lineage and cavitary TB.; The MTB Uganda family has been dominating in Kampala for the last 18 years, but this long-term success is not due to increased virulence as defined by cavitary disease
    corecore