15 research outputs found

    Disease biomarkers in cerebrospinal fluid of patients with first-onset psychosis

    Get PDF
    BACKGROUND: Psychosis is a severe mental condition that is characterized by a loss of contact with reality and is typically associated with hallucinations and delusional beliefs. There are numerous psychiatric conditions that present with psychotic symptoms, most importantly schizophrenia, bipolar affective disorder, and some forms of severe depression referred to as psychotic depression. The pathological mechanisms resulting in psychotic symptoms are not understood, nor is it understood whether the various psychotic illnesses are the result of similar biochemical disturbances. The identification of biological markers (so-called biomarkers) of psychosis is a fundamental step towards a better understanding of the pathogenesis of psychosis and holds the potential for more objective testing methods. METHODS AND FINDINGS: Surface-enhanced laser desorption ionization mass spectrometry was employed to profile proteins and peptides in a total of 179 cerebrospinal fluid samples (58 schizophrenia patients, 16 patients with depression, five patients with obsessive-compulsive disorder, ten patients with Alzheimer disease, and 90 controls). Our results show a highly significant differential distribution of samples from healthy volunteers away from drug-naïve patients with first-onset paranoid schizophrenia. The key alterations were the up-regulation of a 40-amino acid VGF-derived peptide, the down-regulation of transthyretin at approximately 4 kDa, and a peptide cluster at approximately 6,800-7,300 Da (which is likely to be influenced by the doubly charged ions of the transthyretin protein cluster). These schizophrenia-specific protein/peptide changes were replicated in an independent sample set. Both experiments achieved a specificity of 95% and a sensitivity of 80% or 88% in the initial study and in a subsequent validation study, respectively. CONCLUSIONS: Our results suggest that the application of modern proteomics techniques, particularly mass spectrometric approaches, holds the potential to advance the understanding of the biochemical basis of psychiatric disorders and may in turn allow for the development of diagnostics and improved therapeutics. Further studies are required to validate the clinical effectiveness and disease specificity of the identified biomarkers

    Metabolic Profiling of CSF: Evidence That Early Intervention May Impact on Disease Progression and Outcome in Schizophrenia

    Get PDF
    BACKGROUND: The identification of schizophrenia biomarkers is a crucial step towards improving current diagnosis, developing new presymptomatic treatments, identifying high-risk individuals and disease subgroups, and assessing the efficacy of preventative interventions at a rate that is not currently possible. METHODS AND FINDINGS: (1)H nuclear magnetic resonance spectroscopy in conjunction with computerized pattern recognition analysis were employed to investigate metabolic profiles of a total of 152 cerebrospinal fluid (CSF) samples from drug-naïve or minimally treated patients with first-onset paranoid schizophrenia (referred to as “schizophrenia” in the following text) and healthy controls. Partial least square discriminant analysis showed a highly significant separation of patients with first-onset schizophrenia away from healthy controls. Short-term treatment with antipsychotic medication resulted in a normalization of the disease signature in over half the patients, well before overt clinical improvement. No normalization was observed in patients in which treatment had not been initiated at first presentation, providing the first molecular evidence for the importance of early intervention for psychotic disorders. Furthermore, the alterations identified in drug-naïve patients could be validated in a test sample set achieving a sensitivity and specificity of 82% and 85%, respectively. CONCLUSIONS: Our findings suggest brain-specific alterations in glucoregulatory processes in the CSF of drug-naïve patients with first-onset schizophrenia, implying that these abnormalities are intrinsic to the disease, rather than a side effect of antipsychotic medication. Short-term treatment with atypical antipsychotic medication resulted in a normalization of the CSF disease signature in half the patients well before a clinical improvement would be expected. Furthermore, our results suggest that the initiation of antipsychotic treatment during a first psychotic episode may influence treatment response and/or outcome

    Validation and Prediction of Schizophrenia Group Membership Using a PLS Model

    No full text
    <p>A PLS model was constructed using the OSC-filtered data from 37 drug-naïve patients with first-onset schizophrenia from the first cohort (red points) and 50 randomly selected healthy volunteers (blue points) (the “training set”). The scores plot (A) and the loadings plot (B) indicate the key resonances contributing to the separation: lactate, glucose, glutamine, and citrate. This model was then used to predict “group membership” (i.e., schizophrenia or control) in a test set of 17 drug-naïve patients (second cohort) with first-onset schizophrenia and the remaining 20 healthy volunteers which had not been used in the construction of the model. Predictions are made using a Y-predicted scatter plot with an a priori cut-off of 0.5 for class membership (C).</p

    Metabonomic Analysis of CSF Samples from Drug-Naïve Patients with Schizophrenia

    No full text
    <div><p>(A) Partial <sup>1</sup>H NMR spectrum of a CSF sample from a representative drug-naïve patient with first-onset schizophrenia (red) and a matched control (black) illustrate a characteristic pH-dependent shift in the β-CH<sub>2</sub> and γ-CH<sub>2</sub> resonances of glutamine. The prominent signals at ~3.7 and 1.2 ppm correspond to ethanol, a contaminant from skin disinfection prior to lumbar puncture. These signals were removed from statistical analysis.</p> <p>(B) PLS-DA scores plot showing a differentiation of drug-naïve patients with schizophrenia from demographically matched controls as determined by the <sup>1</sup>H NMR CSF spectra.</p> <p>(C) PLS-DA loadings plot showing major contributing variables towards the separation in the PLS-DA scores plots.</p></div

    Effects of “Typical” and “Atypical” Medication on CSF Metabolic Profiles in Patients with First-Onset Schizophrenia

    No full text
    <div><p>(A) Spectra from 28 CSF samples from patients with first-onset schizophrenia minimally treated (<9 d, see text for details) with either typical (<i>n</i> = 6, blue diamonds) or atypical (<i>n</i> = 22, green circles) antipsychotic medications were compared to first onset, drug naïve patients (red triangles) and healthy volunteers (black squares) using PLS-DA. The PLS-DA scores plots show that atypical antipsychotic drug treatment resulted in a shift of approximately 50% of patients with schizophrenia towards the cluster of healthy controls.</p> <p>(B) The same PLS-DA scores plot as (A) except that only minimally treated patients (from both drug groups) with more than one psychotic episode prior to antipsychotic treatment are shown. Note that none of these patients shifted towards the healthy control cluster.</p></div

    Mapping and Identification of the Biomarker Peptide Derived from the Native VGF Protein

    No full text
    <div><p>The 3,959-Da “schizophrenia” peptide was mapped to amino acids 23–62 of the native VGF protein (in bold; underlined), immediately next to a predicted secretory signal peptide (using InterProScan: <a href="http://www.ebi.ac.uk/cgi-bin/iprscan" target="_blank">http://www.ebi.ac.uk/cgi-bin/iprscan</a>).</p> <p>Another native VGF-derived peptide did not show differential expression between healthy volunteers and patients with schizophrenia (as shown in <a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0030428#pmed-0030428-g002" target="_blank">Figure 2</a>A). This peptide has an identical sequence except that it is three amino acids shorter at the N-terminus compared to the “disease-specific” VGF peptide.</p></div
    corecore