394 research outputs found
Multidrug-resistant toxigenic Corynebacterium diphtheriae sublineage 453 with two novel resistance genomic islands
Antimicrobial therapy is important for case management of diphtheria, but knowledge on the emergence of multidrug-resistance in Corynebacterium diphtheriae is scarce. We report on the genomic features of two multidrug-resistant toxigenic isolates sampled from wounds in France 3 years apart. Both isolates were resistant to spiramycin, clindamycin, tetracycline, kanamycin and trimethoprim-sulfamethoxazole. Genes ermX, cmx, aph(3')-Ib, aph(6)-Id, aph(3')-Ic, aadA1, dfrA15, sul1, cmlA, cmlR and tet(33) were clustered in two genomic islands, one consisting of two transposons and one integron, the other being flanked by two IS6100 insertion sequences. One isolate additionally presented mutations in gyrA and rpoB and was resistant to ciprofloxacin and rifampicin. Both isolates belonged to sublineage 453 (SL453), together with 25 isolates from 11 other countries (https://bigsdb.pasteur.fr/diphtheria/). SL453 is a cosmopolitan toxigenic sublineage of C. diphtheriae, a subset of which acquired multidrug resistance. Even though penicillin, amoxicillin and erythromycin, recommended as the first line in the treatment of diphtheria, remain active, surveillance of diphtheria should consider the risk of dissemination of multidrug-resistant strains and their genetic elements
Genetic structure and evolution of the Leishmania genus in Africa and Eurasia: what does MLSA tell us
Leishmaniasis is a complex parasitic disease from a taxonomic, clinical and epidemiological point of view. The role of genetic exchanges has been questioned for over twenty years and their recent experimental demonstration along with the identification of interspecific hybrids in natura has revived this debate. After arguing that genetic exchanges were exceptional and did not contribute to Leishmania evolution, it is currently proposed that interspecific exchanges could be a major driving force for rapid adaptation to new reservoirs and vectors, expansion into new parasitic cycles and adaptation to new life conditions. To assess the existence of gene flows between species during evolution we used MLSA-based (MultiLocus Sequence Analysis) approach to analyze 222 Leishmania strains from Africa and Eurasia to accurately represent the genetic diversity of this genus. We observed a remarkable congruence of the phylogenetic signal and identified seven genetic clusters that include mainly independent lineages which are accumulating divergences without any sign of recent interspecific recombination. From a taxonomic point of view, the strong genetic structuration of the different species does not question the current classification, except for species that cause visceral forms of leishmaniasis (L. donovani, L. infantum and L. archibaldi). Although these taxa cause specific clinical forms of the disease and are maintained through different parasitic cycles, they are not clearly distinct and form a continuum, in line with the concept of species complex already suggested for this group thirty years ago. These results should have practical consequences concerning the molecular identification of parasites and the subsequent therapeutic management of the disease
Genetically Related Listeria Monocytogenes Strains Isolated from Lethal Human Cases and Wild Animals
Characterization of the cryptic Escherichia lineages: rapid identification and prevalence
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86967/1/j.1462-2920.2011.02519.x.pd
Neutral genomic microevolution of a recently emerged pathogen, salmonella enterica serovar agona
Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in
1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic
infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational
diversity: only 846 single nucleotide polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since
Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous
recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb) in 5/143 nodes within the
genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse
according to pulsed-field gel electrophoresis (PFGE), which is used to assign isolates to outbreaks. PFGE diversity reflects a
highly dynamic accessory genome associated with the gain or loss (indels) of 51 bacteriophages, 10 plasmids, and 6
integrative conjugational elements (ICE/IMEs), but did not correlate uniquely with outbreaks. Unlike the core genome, indels
occurred repeatedly in independent nodes (homoplasies), resulting in inaccurate PFGE genealogies. The accessory genome
contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity
within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these
changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent
clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed
to be associated with an ability to cause outbreaks
The Galactic Isotropic -ray Background and Implications for Dark Matter
We present an analysis of the radial angular profile of the galacto-isotropic
(GI) -ray flux--the statistically uniform flux in circular annuli about
the Galactic center. Two different approaches are used to measure the GI flux
profile in 85 months of Fermi-LAT data: the BDS statistic method which
identifies spatial correlations, and a new Poisson ordered-pixel method which
identifies non-Poisson contributions. Both methods produce similar GI flux
profiles. The GI flux profile is well-described by an existing model of
bremsstrahlung, production, inverse Compton scattering, and the
isotropic background. Discrepancies with data in our full-sky model are not
present in the GI component, and are therefore due to mis-modeling of the
non-GI emission. Dark matter annihilation constraints based solely on the
observed GI profile are close to the thermal WIMP cross section below 100 GeV,
for fixed models of the dark matter density profile and astrophysical
-ray foregrounds. Refined measurements of the GI profile are expected
to improve these constraints by a factor of a few.Comment: 20 pages, 15 figures, references adde
Virulent Clones of Klebsiella pneumoniae: Identification and Evolutionary Scenario Based on Genomic and Phenotypic Characterization
Klebsiella pneumoniae is found in the environment and as a harmless commensal, but is also a frequent nosocomial pathogen (causing urinary, respiratory and blood infections) and the agent of specific human infections including Friedländer's pneumonia, rhinoscleroma and the emerging disease pyogenic liver abscess (PLA). The identification and precise definition of virulent clones, i.e. groups of strains with a single ancestor that are associated with particular infections, is critical to understand the evolution of pathogenicity from commensalism and for a better control of infections. We analyzed 235 K. pneumoniae isolates of diverse environmental and clinical origins by multilocus sequence typing, virulence gene content, biochemical and capsular profiling and virulence to mice. Phylogenetic analysis of housekeeping genes clearly defined clones that differ sharply by their clinical source and biological features. First, two clones comprising isolates of capsular type K1, clone CC23K1 and clone CC82K1, were strongly associated with PLA and respiratory infection, respectively. Second, only one of the two major disclosed K2 clones was highly virulent to mice. Third, strains associated with the human infections ozena and rhinoscleroma each corresponded to one monomorphic clone. Therefore, K. pneumoniae subsp. ozaenae and K. pneumoniae subsp. rhinoscleromatis should be regarded as virulent clones derived from K. pneumoniae. The lack of strict association of virulent capsular types with clones was explained by horizontal transfer of the cps operon, responsible for the synthesis of the capsular polysaccharide. Finally, the reduction of metabolic versatility observed in clones Rhinoscleromatis, Ozaenae and CC82K1 indicates an evolutionary process of specialization to a pathogenic lifestyle. In contrast, clone CC23K1 remains metabolically versatile, suggesting recent acquisition of invasive potential. In conclusion, our results reveal the existence of important virulent clones associated with specific infections and provide an evolutionary framework for research into the links between clones, virulence and other genomic features in K. pneumoniae
A New Perspective on Listeria monocytogenes Evolution
Listeria monocytogenes is a model organism for cellular microbiology and host–pathogen interaction studies and an important food-borne pathogen widespread in the environment, thus representing an attractive model to study the evolution of virulence. The phylogenetic structure of L. monocytogenes was determined by sequencing internal portions of seven housekeeping genes (3,288 nucleotides) in 360 representative isolates. Fifty-eight of the 126 disclosed sequence types were grouped into seven well-demarcated clonal complexes (clones) that comprised almost 75% of clinical isolates. Each clone had a unique or dominant serotype (4b for clones 1, 2 and 4, 1/2b for clones 3 and 5, 1/2a for clone 7, and 1/2c for clone 9), with no association of clones with clinical forms of human listeriosis. Homologous recombination was extremely limited (r/m<1 for nucleotides), implying long-term genetic stability of multilocus genotypes over time. Bayesian analysis based on 438 SNPs recovered the three previously defined lineages, plus one unclassified isolate of mixed ancestry. The phylogenetic distribution of serotypes indicated that serotype 4b evolved once from 1/2b, the likely ancestral serotype of lineage I. Serotype 1/2c derived once from 1/2a, with reference strain EGDe (1/2a) likely representing an intermediate evolutionary state. In contrast to housekeeping genes, the virulence factor internalin (InlA) evolved by localized recombination resulting in a mosaic pattern, with convergent evolution indicative of natural selection towards a truncation of InlA protein. This work provides a reference evolutionary framework for future studies on L. monocytogenes epidemiology, ecology, and virulence
Phylogenomics of Acinetobacter species and analysis of antimicrobial resistance genes
Introduction: Non-baumannii Acinetobacter species are increasingly isolated in the clinical setting and the environment. The aim of the present study was to analyze a genome database of 837 Acinetobacter spp. isolates, which included 798 non-baumannii Acinetobacter genomes, in order to define the concordance of classification and discriminatory power of 7-gene MLST, 53-gene MLST, and single-nucleotide polymorphism (SNPs) phylogenies.
Methods: Phylogenies were performed on Pasteur Multilocus Sequence Typing (MLST) or ribosomal Multilocus Sequence Typing (rMLST) concatenated alleles, or SNPs extracted from core genome alignment.
Results: The Pasteur MLST scheme was able to identify and genotype 72 species in the Acinetobacter genus, with classification results concordant with the ribosomal MLST scheme. The discriminatory power and genotyping reliability of the Pasteur MLST scheme were assessed in comparison to genome-wide SNP phylogeny on 535 non-baumannii Acinetobacter genomes assigned to Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter seifertii, and Acinetobacter lactucae (heterotypic synonym of Acinetobacter dijkshoorniae), which were the most clinically relevant non-baumannii species of the A. baumannii group. The Pasteur MLST and SNP phylogenies were congruent at Robinson-Fould and Matching cluster tests and grouped genomes into four and three clusters in A. pittii, respectively, and one each in A. seifertii. Furthermore, A. lactucae genomes were grouped into one cluster within A. pittii genomes. The SNP phylogeny of A. nosocomialis genomes showed a heterogeneous population and did not correspond to the Pasteur MLST phylogeny, which identified two recombinant clusters. The antimicrobial resistance genes belonging to at least three different antimicrobial classes were identified in 91 isolates assigned to 17 distinct species in the Acinetobacter genus. Moreover, the presence of a class D oxacillinase, which is a naturally occurring enzyme in several Acinetobacter species, was found in 503 isolates assigned to 35 Acinetobacter species.
Conclusion: In conclusion, Pasteur MLST phylogeny of non-baumannii Acinetobacter isolates coupled with in silico detection of antimicrobial resistance makes it important to study the population structure and epidemiology of Acinetobacter spp. isolates
- …