37 research outputs found

    N-(4-iodophenyl)-N′-(2-chloroethyl)urea as a microtubule disrupter: in vitro and in vivo profiling of antitumoral activity on CT-26 murine colon carcinoma cell line cultured and grafted to mice

    Get PDF
    The antitumoral profile of the microtubule disrupter N-(4-iodophenyl)-N′-(2-chloroethyl)urea (ICEU) was characterised in vitro and in vivo using the CT-26 colon carcinoma cell line, on the basis of the drug uptake by the cells, the modifications of cell cycle, and β-tubulin and lipid membrane profiles. N-(4-iodophenyl)-N′-(2-chloroethyl)urea exhibited a rapid and dose-dependent uptake by CT-26 cells suggesting its passive diffusion through the membranes. Intraperitoneally injected ICEU biodistributed into the grafted CT-26 tumour, resulting thus in a significant tumour growth inhibition (TGI). N-(4-iodophenyl)-N′-(2-chloroethyl)urea was also observed to accumulate within colon tissue. Tumour growth inhibition was associated with a slight increase in the number of G2 tetraploid tumour cells in vivo, whereas G2 blockage was more obvious in vitro. The phenotype of β-tubulin alkylation that was clearly demonstrated in vitro was undetectable in vivo. Nuclear magnetic resonance analysis showed that cells blocked in G2 phase underwent apoptosis, as confirmed by an increase in the methylene group resonance of mobile lipids, parallel to sub-G1 accumulation of the cells. In vivo, a decrease of the signals of both the phospholipid precursors and the products of membrane degradation occurred concomitantly with TGI. This multi-analysis established, at least partly, the ICEU activity profile, in vitro and in vivo, providing additional data in favour of ICEU as a tubulin-interacting drug accumulating within the intestinal tract. This may provide a starting point for researches for future efficacious tubulin-interacting drugs for the treatment of colorectal cancers

    The Alcohol Dehydrogenase System in the Xylose-Fermenting Yeast Candida maltosa

    Get PDF
    The alcohol dehydrogenase (ADH) system plays a critical role in sugar metabolism involving in not only ethanol formation and consumption but also the general "cofactor balance" mechanism. Candida maltosa is able to ferment glucose as well as xylose to produce a significant amount of ethanol. Here we report the ADH system in C. maltosa composed of three microbial group I ADH genes (CmADH1, CmADH2A and CmADH2B), mainly focusing on its metabolic regulation and physiological function.Genetic analysis indicated that CmADH2A and CmADH2B tandemly located on the chromosome could be derived from tandem gene duplication. In vitro characterization of enzymatic properties revealed that all the three CmADHs had broad substrate specificities. Homo- and heterotetramers of CmADH1 and CmADH2A were demonstrated by zymogram analysis, and their expression profiles and physiological functions were different with respect to carbon sources and growth phases. Fermentation studies of ADH2A-deficient mutant showed that CmADH2A was directly related to NAD regeneration during xylose metabolism since CmADH2A deficiency resulted in a significant accumulation of glycerol.Our results revealed that CmADH1 was responsible for ethanol formation during glucose metabolism, whereas CmADH2A was glucose-repressed and functioned to convert the accumulated ethanol to acetaldehyde. To our knowledge, this is the first demonstration of function separation and glucose repression of ADH genes in xylose-fermenting yeasts. On the other hand, CmADH1 and CmADH2A were both involved in ethanol formation with NAD regeneration to maintain NADH/NAD ratio in favor of producing xylitol from xylose. In contrast, CmADH2B was expressed at a much lower level than the other two CmADH genes, and its function is to be further confirmed

    The diterpenoid alkaloid noroxoaconitine is a Mapkap kinase 5 (MK5/PRAK) inhibitor

    Get PDF
    The mitogen-activated protein kinase-activated protein kinase MK5 is ubiquitously expressed in vertebrates and is implicated in cell proliferation, cytoskeletal remodeling, and anxiety behavior. This makes MK5 an attractive drug target. We tested several diterpenoid alkaloids for their ability to suppress MK5 kinase activity. We identified noroxoaconitine as an ATP competitor that inhibited the catalytic activity of MK5 in vitro (IC50 = 37.5 μM; Ki = 0.675 μM) and prevented PKA-induced nuclear export of MK5, a process that depends on kinase active MK5. MK5 is closely related to MK2 and MK3, and noroxoaconitine inhibited MK3- and MK5- but not MK2-mediated phosphorylation of the common substrate Hsp27. Molecular docking of noroxoaconitine into the ATP binding sites indicated that noroxoaconitine binds more strongly to MK5 than to MK3. Noroxoaconitine and derivatives may help in elucidating the precise biological functions of MK5 and may prove to have therapeutic values

    Identification of Retinoic Acid in a High Content Screen for Agents that Overcome the Anti-Myogenic Effect of TGF-Beta-1

    Get PDF
    Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1.A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC) in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells.Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be useful to screen for less-toxic retinoids or combinations of agents that promote myoblast differentiation in the presence of TGF-β1

    Effects of AZT on cellular iron homeostasis

    No full text
    3'-azido-3'-deoxythymidine (AZT), the first chemotherapeutic drug approved by FDA for treatment of HIV-infected patients and still used in combination therapy, has been shown to induce, upon prolonged exposure, severe bone marrow toxicity manifested as anemia, neutropenia and siderosis. These toxic effects are caused by inhibition of heme synthesis and, as a consequence, transferrin receptor (TfR) number appears increased and so iron taken up by cells. Since iron overload can promote the frequency and severity of many infections, siderosis is viewed as a further burden for AIDS patients. We have previously demonstrated that AZT-treated K562 cells showed an increase of the number of TfRs located on the surface of the plasma membrane without affecting their biosynthesis, but slowing down their endocytotic pathway. In spite of the higher number of receptors on the plasma-membrane of AZT-treated cells, intracellular accumulation of iron showed a similar level in control and in drug-exposed cells. The chelating ability of AZT and of its phosphorylated derivatives, both in an acellular system and in K562 cells, was also checked. The results demonstrated that AZT and AZTMP were uneffective as iron chelators, while AZTTP displayed a significant capacity to remove iron from transferrin (Tf). Our results suggest that AZT may be not directly involved in the iron overloading observed upon its prolonged use in AIDS therapy. The iron accumulation found in these patients is instead caused by other unknown mechanisms that need further studies to be clarified

    3 '-Azido-3 '-deoxythymidine reduces the rate of transferrin receptor endocytosis in K562 cells

    No full text
    K562 cells, exposed for at least 24 h to 5 mu M 3'-azido-3'-deoxythymidine (AZT), gave rise to an overall increase in the number of cell surface transferrin binding receptors (18-20%). This effect was ascertained either with binding experiments by using I-125-transferrin and with immunoprecipitation by using a specific monoclonal antibody against the transferrin receptor. At higher AZT concentrations (20 and 40 mu M), a further increase was found, that is, up to 23% by binding experiments and up to 110% by immunoprecipitation. However, Scatchard analysis of the binding data indicated that although the number of cell surface transferrin receptors increased, the affinity of transferrin for its receptor did not change (K-a = 4.0 x 10(8) M). Surprisingly, immunoprecipitation of total receptor molecules showed that the synthesis of receptor was not enhanced by the drug treatment. The effect of AZT on transferrin internalization and receptor recycling was also investigated. In this case, data indicated that the increase in the number of receptors at the cell surface was probably due to a slowing down of endocytosis rate rather than to an increased recycling rate of the receptor to cell surface. In fact, the time during which half the saturated amount of transferrin had been endocytosed (t(1/2)) was 2.15 min for control cells and 3.41, 3.04, and 3.74 min for 5, 20, and 40 mu M AZT-treated cells, respectively. Conversely, recycling experiments did not show any significant differences between control and treated cells. A Likely mechanism through which AZT could interfere with the transferrin receptor trafficking, together with the relevance of our findings, is extensively discussed

    Amino acid replacement at position 228 induces fluctuation in the Ω-loop of KPC-3 and reduces the affinity against oxyimino cephalosporins: Kinetic and molecular dynamics studies

    No full text
    KPC enzymes are the most common class A carbapenemases globally diffused. The peculiarity of this family of β-lactamases is represented by their ability to hydrolyse all classes of β-lactams, including carbapenems, posing a serious problem to public health. In the present study, seven laboratory mutants of KPC-3 (D228S, D228W, D228M, D228K, D228L, D228I and D228G) were generated by site-saturation mutagenesis to explore the role of residue 228, a non-active site residue. Compared to KPC-3, the seven mutants showed evident differences in kcat and Km values calculated for some penicillins, cephalosporins and carbapenems. In particular, D228S and D228M showed a significant increase of Km values for cefotaxime and ceftazidime. Circular dichroism (CD) experiments have demonstrated that substitution at position 228 does not affect the secondary structure of the mutants. Molecular dynamics (MD) simulations were performed on KPC-3, D228S and D228M uncomplexed and complexed with cefotaxime (substrate). Although the residue 228 is located far from the active site, between α11 helix and β7 sheet in the opposite site of the Ω-loop, amino acid substitution at this position generates mechanical effects in the active site resulting in enzyme activity changes
    corecore