261 research outputs found

    Phosphatidylinositol 3-Kinase/AKT pathway regulates the endoplasmic reticulum to Golgi traffic of ceramide in glioma cells : a link between lipid signaling pathways involved in the control of cell survival

    Get PDF
    Different lines of evidence indicate that both aberrant activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt survival pathway and down-regulation of the death mediator ceramide play a critical role in the aggressive behavior, apoptosis resistance, and adverse clinical outcome of glioblastoma multiforme. Furthermore, the inhibition of the PI3K/Akt pathway and the up-regulation of ceramide have been found functional to the activity of many cytotoxic treatments against glioma cell lines and glioblastomas as well. A reciprocal control between PI3K/Akt and ceramide signaling in glioma cell survival/death is suggested by data demonstrating a protective role of PI3K/Akt on ceramide-induced cell death in glial cells. In this study we investigated the role of the PI3K/Akt pathway in the regulation of the ceramide metabolism in C6 glioma cells, a cell line in which the PI3K/Akt pathway is constitutively activated. Metabolic experiments performed with different radioactive metabolic precursors of sphingolipids and microscopy studies with fluorescent ceramides demonstrated that the chemical inhibition of PI3K and the transfection with a dominant negative Akt strongly inhibited ceramide utilization for the biosynthesis of complex sphingolipids by controlling the endoplasmic reticulum (ER) to Golgi vesicular transport of ceramide. These findings constitute the first evidence for a PI3K/Akt-dependent regulation of vesicle-mediated movements of ceramide in the ER-Golgi district. Moreover, the findings also suggest the activation of the PI3K/Akt pathway as crucial to coordinate the biosynthesis of membrane complex sphingolipids with cell proliferation and growth and/or to maintain low ceramide levels, especially as concerns those treatments that promote ceramide biosynthesis in the ER

    Reliability of the Multidimensional Pain Inventory and stability of the MPI classification system in chronic back pain

    Get PDF
    Contains fulltext : 109346.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: This cross validation study examined the reliability of the Multidimensional Pain Inventory (MPI) and the stability of the Multidimensional Pain Inventory Classification System of the empirically derived subgroup classification obtained by cluster analysis in chronic musculoskeletal pain. Reliability of the German Multidimensional Pain Inventory was only examined once in the past in a small sample. Previous international studies mainly involving fibromyalgia patients showed that retest resulted in 33-38% of patients being assigned to a different Multidimensional Pain Inventory subgroup classification. METHODS: Participants were 204 persons with chronic musculoskeletal pain (82% chronic non-specific back pain). Subgroup classification was conducted by cluster analysis at 4 weeks before entry (=test) and at entry into the pain management program (=retest) using Multidimensional Pain Inventory scale scores. No therapeutic interventions in this period were conducted. Reliability was quantified by intraclass correlation coefficients (ICC) and stability by kappa coefficients (kappa). RESULTS: Reliability of the Multidimensional Pain Inventory scales was least with ICC = 0.57 for the scale life control and further ranged from ICC = 0.72 (negative mood) to 0.87 (solicitous responses) in the other scales. At retest, 82% of the patients in the Multidimensional Pain Inventory cluster interpersonally distressed (kappa = 0.69), 80% of the adaptive copers (kappa = 0.58), and 75% of the dysfunctional patients (kappa = 0.70) did not change classification. In total, 22% of the patients changed Multidimensional Pain Inventory cluster group, mainly into the adaptive copers subgroup. CONCLUSION: Test-retest reliability of the German Multidimensional Pain Inventory was moderate to good and comparable to other language versions. Multidimensional Pain Inventory subgroup classification is substantially stable in chronic back pain patients when compared to other diagnostic groups and other examiner-based subgroup Classification Systems. The MPI Classification System can be recommended for reliable and stable specification of subgroups in observational and interventional studies in patients with chronic musculoskeletal pain

    Elevated Expression of Squamous Cell Carcinoma Antigen (SCCA) Is Associated with Human Breast Carcinoma

    Get PDF
    Squamous cell carcinoma antigen (SCCA) belongs to the serine protease inhibitor (Serpin) family of proteins. Elevated expression of SCCA has been used as a biomarker for aggressive squamous cell carcinoma (SCC) in cancers of the cervix, lung, head and neck, and liver. However, SCCA expression in breast cancer has not been investigated. Immunohistochemical analysis of SCCA expression was performed on tissue microarrays containing breast tumor tissues (n = 1,360) and normal breast epithelium (n = 124). SCCA expression was scored on a tiered scale (0-3) independently by two evaluators blind to the patient's clinical status. SCCA expression was observed in Grade I (0.3%), Grade II (2.5%), and Grade III (9.4%) breast cancers (p<0.0001). Comparing tissues categorized into the three non-metastatic TNM stages, I-III, SCCA positivity was seen in 2.4% of Stage I cancers, 3.1% of Stage II cancers, and 8.6% of Stage III breast cancers (p = 0.0005). No positive staining was observed in normal/non-neoplastic breast tissue (0 out of 124). SCCA expression also correlated to estrogen receptor/progesterone receptor (ER/PR) double-negative tumors (p = 0.0009). Compared to SCCA-negative patients, SCCA-positive patients had both a worse overall survival and recurrence-free survival (p<0.0001 and p<0.0001, respectively). This study shows that SCCA is associated with both advanced stage and high grade human breast carcinoma, and suggests the necessity to further explore the role of SCCA in breast cancer development and treatment

    Patterns of subregional cerebellar atrophy across epilepsy syndromes: An ENIGMA-Epilepsy study

    Get PDF
    \ua9 2024 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.Objective: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. Methods: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. Results: Across all epilepsies, reduced total cerebellar volume was observed (d =.42). Maximum volume loss was observed in the corpus medullare (dmax =.49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax =.47), crus I/II (dmax =.39), VIIIA (dmax =.45), and VIIIB (dmax =.40). Earlier age at seizure onset ((Formula presented.) =.05) and longer epilepsy duration ((Formula presented.) =.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. Significance: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy
    corecore