2,432 research outputs found

    COPTRAN - A method of optimum communication systems design

    Get PDF
    Single set of mathematical expressions describes system cost and probability of error of data transmission in terms of four basic parameters in the link equation. A Lagrange multiplier sets up equations whose solutions yield the optimum values for system design considerations and weight and cost values

    Generalization of Gutzwiller Approximation

    Full text link
    We derive expressions required in generalizing the Gutzwiller approximation to models comprising arbitrarily degenerate localized orbitals.Comment: 6 pages, 1 figure, to appear in J.Phys.Soc.Jpn. vol.6

    Pore Narrowing and Formation of Ultrathin Yttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition/Electrochemical Vapor Deposition

    Get PDF
    Chemical vapor deposition (CVD) and electrochemical vapor deposition (EVD) have been applied to deposit yttria-stabilized-zirconia (YSZ) on porous ceramic media. The experimental results indicate that the location of YSZ deposition can be varied from the surface of the substrates to the inside of the substrates by changing the CVD/EVD experimental conditions, i.e., the concentration ratio of the reactant vapors. The deposition width is strongly dependent on the deposition temperature used. The deposition of YSZ inside the pores resulted in pore narrowing and eventually pore closure, which was measured by using permpor-ometry. However, deposition of YSZ on top of porous ceramic substrates (outside the pores) did not result in a reduction of the average pore size. Ultrathin, dense YSZ layers on porous ceramic substrates can be obtained by suppressing the EVD layer growth process after pore closure

    Temperature Dependence of Interlayer Magnetoresistance in Anisotropic Layered Metals

    Full text link
    Studies of interlayer transport in layered metals have generally made use of zero temperature conductivity expressions to analyze angle-dependent magnetoresistance oscillations (AMRO). However, recent high temperature AMRO experiments have been performed in a regime where the inclusion of finite temperature effects may be required for a quantitative description of the resistivity. We calculate the interlayer conductivity in a layered metal with anisotropic Fermi surface properties allowing for finite temperature effects. We find that resistance maxima are modified by thermal effects much more strongly than resistance minima. We also use our expressions to calculate the interlayer resistivity appropriate to recent AMRO experiments in an overdoped cuprate which led to the conclusion that there is an anisotropic, linear in temperature contribution to the scattering rate and find that this conclusion is robust.Comment: 8 pages, 4 figure

    Hubbard physics in the symmetric half-filled periodic Anderson-Hubbard model

    Get PDF
    Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculate the density of doubly occupied dd sites as a function of various parameters. In the absence of on-site Coulomb interaction (UfU_f) between ff electrons, the two methods yield similar results. The double occupancy of dd levels remains always finite just as in the one-dimensional Hubbard model. Exact diagonalization on finite chains gives the same result for finite UfU_f, while the Gutzwiller method leads to a Brinkman-Rice transition at a critical value (UdcU_d^c), which depends on UfU_f and VV.Comment: 10 pages, 5 figure

    ac hopping admittance in spinel manganate negative temperature coefficient thermistor electroceramics

    Get PDF
    In this work, the ac admittance of a thick film nickel manganate spinel negative temperature coefficient thermistor ceramic system containing a glass phase is investigated. The dominating relaxation process is a grain boundary (GB) effect and has been investigated comprehensively. We present double-logarithmic plots of the specific admittance σ' vs ω and (σ'/σ_(dc)) vs ω, and specific impedance z vs −z"/ω and [(ρ_(dc)/z')−1] vs ω, in order to characterize GB charge transport. Using the complex admittance notation (σ*), an unusually low Jonscher exponent of frequency ~0.007 was obtained and the GB relaxation displayed close to ideal behavior

    Bounds on Dimension Reduction in the Nuclear Norm

    Get PDF
    \newcommand{\schs}{\scriptstyle{\mathsf{S}}_1} For all n1n \ge 1, we give an explicit construction of m×mm \times m matrices A1,,AnA_1,\ldots,A_n with m=2n/2m = 2^{\lfloor n/2 \rfloor} such that for any dd and d×dd \times d matrices A1,,AnA'_1,\ldots,A'_n that satisfy \|A'_i-A'_j\|_{\schs} \,\leq\, \|A_i-A_j\|_{\schs}\,\leq\, (1+\delta) \|A'_i-A'_j\|_{\schs} for all i,j{1,,n}i,j\in\{1,\ldots,n\} and small enough δ=O(nc)\delta = O(n^{-c}), where c>0c> 0 is a universal constant, it must be the case that d2n/21d \ge 2^{\lfloor n/2\rfloor -1}. This stands in contrast to the metric theory of commutative p\ell_p spaces, as it is known that for any p1p\geq 1, any nn points in p\ell_p embed exactly in pd\ell_p^d for d=n(n1)/2d=n(n-1)/2. Our proof is based on matrices derived from a representation of the Clifford algebra generated by nn anti-commuting Hermitian matrices that square to identity, and borrows ideas from the analysis of nonlocal games in quantum information theory.Comment: 16 page

    Gate-tunable band structure of the LaAlO3_3-SrTiO3_3 interface

    Get PDF
    The 2-dimensional electron system at the interface between LaAlO3_{3} and SrTiO3_{3} has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson calculations and observe a Lifshitz transition at a density of 2.9×10132.9\times10^{13} cm2^{-2}. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure

    Phase diagrams of correlated electrons: systematic corrections to the mean field theory

    Full text link
    Perturbative corrections to the mean field theory for particle-hole instabilities of interacting electron systems are computed within a scheme which is equivalent to the recently developed variational approach to the Kohn-Luttinger superconductivity. This enables an unbiased comparison of particle-particle and particle-hole instabilities within the same approximation scheme. A spin-rotation invariant formulation for the particle-hole instabilities in the triplet channel is developed. The method is applied to the phase diagram of the t-t' Hubbard model on the square lattice. At the Van Hove density, antiferromagnetic and d-wave Pomeranchuk phases are found to be stable close to half filling. However, the latter phase is confined to an extremely narrow interval of densities and away from the singular filling, d-wave superconducting instability dominates

    Parallel electron-hole bilayer conductivity from electronic interface reconstruction

    Get PDF
    The perovskite SrTiO3_3-LaAlO3_3 structure has advanced to a model system to investigate the rich electronic phenomena arising at polar interfaces. Using first principles calculations and transport measurements we demonstrate that an additional SrTiO3_3 capping layer prevents structural and chemical reconstruction at the LaAlO3_3 surface and triggers the electronic reconstruction at a significantly lower LaAlO3_3 film thickness than for the uncapped systems. Combined theoretical and experimental evidence (from magnetotransport and ultraviolet photoelectron spectroscopy) suggests two spatially separated sheets with electron and hole carriers, that are as close as 1 nm.Comment: Phys. Rev. Lett., in pres
    corecore