2,055 research outputs found

    Oxometalate-glass composites and thin films

    Get PDF
    New glass-composites with ion exchange properties have been developed. Ammonium 12-molybdophosphate (AMP) (ΝΗ4)3ΡΜοΐ2θ4ο, and ammonium 12-tungstophosphate (AWP) (Nh4)3PW12O40, known for their ion exchange capabilities, are included either in preformed aerogels with defined pore size, or are added to sol-gel mixtures during the process of gel formation. Characterization is carried out by FTIR, Raman and EXAFS spectroscopy. Ion exchange capacities for the oxometalate precursors are determined for silver and rubidium and are compared to those of the glass composites. Glass composites show high ion exchange capacity, but some portion of the metalate complexes leaches from the glass during the procedure. This is in contrast to thin composite films, which have almost no porosity and do not show loss of metalate. EXAFS spectroscopy demostrates that the oxometalate microstructure is maintained in glass composites and that rubidium ions after ion exchange in glasses occupy similar cation positions as in the precursor compounds

    Uniformity of the pseudomagnetic field in strained graphene

    Full text link
    We present a study on the uniformity of the pseudomagnetic field in graphene as a function of the relative orientation between the graphene lattice and straining directions. For this, we strained a regular micron-sized graphene hexagon by deforming it symmetrically by displacing three of its edges. By simulations, we found that the pseudomagnetic field is strongest if the strain is applied perpendicular to the armchair direction of graphene. For a hexagon with a side length of 1 μ{\rm \mu}m, the pseudomagnetic field has a maximum of 1.2 T for an applied strain of 3.5% and it is uniform (variance <1< 1%) within a circle with a diameter of 520\sim 520 nm. This diameter is on the order of the typical diameter of the laser spot in a state-of-the-art confocal Raman spectroscopy setup, which suggests that observing the pseudomagnetic field in measurements of shifted magneto-phonon resonance is feasible.Comment: 7 pages, 5 figure

    New directions in InP solar cell research

    Get PDF
    Recent research efforts representing new directions in InP solar cell research are reviewed. These include heteroepitaxial growth on silicon and gallium arsenide substrates, V-grooved cells, large area high efficiency cells, and surface passivation. Improvements in heteroepitaxial cell efficiency are described together with processing of 19.1 percent, 4 sq cm cells. Recommendations are made for improvements in processing leading to increased efficiencies

    Cross-Hedging Distillers Dried Grains: Exploring Corn and Soybean Meal Futures Contracts

    Get PDF
    Ethanol mandates and high fuel prices have led to an increase in the number of ethanol plants in the U.S. in recent years. In turn, this has led to an increase in the production of distillers dried grains (DDGs) as a co-product of ethanol production. DDG production in 2006 is estimated to be near 11 million tons. A sharp increase in ethanol production and thus DDGs is expected in 2007 with an increase with the number of ethanol plants. As with most competitive industries, there is some level of price risk in handling DDGs and no futures contract available for this co-product. Ethanol plants, as well as users of DDGs, may find cross-hedging DDGs with corn or soybean meal (SBM) futures as an effective means of managing risk. Traditionally, DDGs are hedged using only corn futures.

    Radiation damage and annealing in large area n+/p/p+ GaAs shallow homojunction solar cells

    Get PDF
    Annealing of radiation damage was observed for the first time in VPE-grown, 2- by 2-cm, n+/p/p+ GaAs shallow homojunction solar cells. Electrical performance of several cells was determined as a function of 1-MeV electron fluence in the range of 10 to the 13th power to 10 to the 15th power e-/sq cm and as a function of thermal annealing time at various temperatures. Degradation of normalized power output after a fluence of 10 to the 15th power 1-MeV electrons/sq cm ranged from a low of 24 to 31 percent of initial maximum power. Normalized short circuit current degradation was limited to the range from 10 to 19 percent of preirradiated values. Thermal annealing was carried out in a flowing nitrogen gas ambient, with annealing temperatures spanning the range from 125 to 200 C. Substantial recovery of short circuit current was observed at temperatures as low as 175 C. In one case improvement by as much as 10 percent of the postirradiated value was observed. The key features of these cells are their extremely thin emitter layers (approxmately 0.05 micrometers), the absence of any Al sub xGd sub 1-x As passivating window layer, and their fabrication by vapor phase epitaxy

    Cross-Hedging Distillers Dried Grains Using Corn and Soybean Meal Futures Contracts

    Get PDF
    Ethanol mandates have led to an increase in the production of distillers dried grains (DDGs), a co-product of ethanol production that is incorporated into livestock rations. As with most competitive industries, there is some level of price risk in handling DDGs, and there is no DDG futures contract available for managing price risk. Commonly, DDGs are hedged using only corn futures. Our results suggest that cross-hedge risk may be reduced by including soybean meal futures in an encompassing cross-hedge strategy. Further, we also conclude soybean meal futures currently may be slightly more effective at reducing risk than in the past.cross-hedge, distillers dried grains, ethanol, price risk, Agribusiness, Demand and Price Analysis,

    Viscous coalescence of droplets: a Lattice Boltzmann study

    Full text link
    The coalescence of two resting liquid droplets in a saturated vapor phase is investigated by Lattice Boltzmann simulations in two and three dimensions. We find that, in the viscous regime, the bridge radius obeys a t^{1/2}-scaling law in time with the characteristic time scale given by the viscous time. Our results differ significantly from the predictions of existing analytical theories of viscous coalescence as well as from experimental observations. While the underlying reason for these deviations is presently unknown, a simple scaling argument is given that describes our results well.Comment: 12 pages, 10 figures; as published in Phys. Fluid

    Effect of dislocations on properties of heteroepitaxial InP solar cells

    Get PDF
    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells

    A comparative study of p(+)n and n(+)p InP solar cells made by a closed ampoule diffusion

    Get PDF
    The purpose was to demonstrate the possibility of fabricating thermally diffused p(+)n InP solar cells having high open-circuit voltage without sacrificing the short circuit current. The p(+)n junctions were formed by closed-ampoule diffusion of Cd through a 3 to 5 nm thick anodic or chemical phosphorus-rich oxide cap layer grown on n-InP:S Czochralski LEC grown substrates. For solar cells made by thermal diffusion the p(+)n configuration is expected to have a higher efficiency than the n(+)p configuration. It is predicted that the AM0, BOL efficiencies approaching 19 percent should be readily achieved providing that good ohmic front contacts could be realized on the p(+) emitters of thickness lower than 1 micron

    A Hamiltonian approach for explosive percolation

    Full text link
    We introduce a cluster growth process that provides a clear connection between equilibrium statistical mechanics and an explosive percolation model similar to the one recently proposed by Achlioptas et al. [Science 323, 1453 (2009)]. We show that the following two ingredients are essential for obtaining an abrupt (first-order) transition in the fraction of the system occupied by the largest cluster: (i) the size of all growing clusters should be kept approximately the same, and (ii) the inclusion of merging bonds (i.e., bonds connecting vertices in different clusters) should dominate with respect to the redundant bonds (i.e., bonds connecting vertices in the same cluster). Moreover, in the extreme limit where only merging bonds are present, a complete enumeration scheme based on tree-like graphs can be used to obtain an exact solution of our model that displays a first-order transition. Finally, the proposed mechanism can be viewed as a generalization of standard percolation that discloses an entirely new family of models with potential application in growth and fragmentation processes of real network systems.Comment: 4 pages, 4 figure
    corecore