3,847 research outputs found

    Interface-induced d-wave pairing

    Full text link
    We discuss a scenario for interface-induced superconductivity involving pairing by dipolar excitations proximate to a two-dimensional electron system controlled by a transverse electric field. If the interface consists of transition metal oxide materials, the repulsive on-site Coulomb interaction is typically strong and a superconducting state is formed via exchange of non-local dipolar excitations in the d-wave channel. Perspectives to enhance the superconducting transition temperature are discussed.Comment: 4 pages, 3 figure

    Excitonic quasiparticles in a spin-orbit Mott insulator

    Full text link
    In condensed matter systems, out of a large number of interacting degrees of freedom emerge weakly coupled particles, in terms of which most physical properties are described. For example, Landau quasiparticles (QP) determine all electronic properties of a normal metal. The lack of identification of such QPs is major barrier for understanding myriad exotic properties of correlated electrons, such as unconventional superconductivity and non-Fermi liquid behaviours. Here, we report the observation of a composite particle in a Mott insulator Sr2IrO4---and exciton dressed with magnons---that propagates with the canonical characteristics of a QP: a finite QP residue and a lifetime longer than the hopping time scale. The dynamics of this charge-neutral bosonic excitation mirrors the fundamental process of the analogous one-hole propagation in the background of ordered spins, for which a well-defined QP has never been observed. The much narrower linewidth of the exciton reveals the same intrinsic dynamics that is obscured for the hole and is intimately related to the mechanism of high temperature superconductivity.Comment: submitted versio

    Efficient and specific oligo-based depletion of rRNA

    Get PDF
    In most organisms, ribosomal RNA (rRNA) contributes to >85% of total RNA. Thus, to obtain useful information from RNA-sequencing (RNA-seq) analyses at reasonable sequencing depth, typically, mature polyadenylated transcripts are enriched or rRNA molecules are depleted. Targeted depletion of rRNA is particularly useful when studying transcripts lacking a poly(A) tail, such as some non-coding RNAs (ncRNAs), most bacterial RNAs and partially degraded or immature transcripts. While several commercially available kits allow effective rRNA depletion, their efficiency relies on a high degree of sequence homology between oligonucleotide probes and the target RNA. This restricts the use of such kits to a limited number of organisms with conserved rRNA sequences. In this study we describe the use of biotinylated oligos and streptavidin-coated paramagnetic beads for the efficient and specific depletion of trypanosomal rRNA. Our approach reduces the levels of the most abundant rRNA transcripts to less than 5% with minimal off-target effects. By adjusting the sequence of the oligonucleotide probes, our approach can be used to deplete rRNAs or other abundant transcripts independent of species. Thus, our protocol provides a useful alternative for rRNA removal where enrichment of polyadenylated transcripts is not an option and commercial kits for rRNA are not available

    The complete LQG propagator: I. Difficulties with the Barrett-Crane vertex

    Full text link
    Some components of the graviton two-point function have been recently computed in the context of loop quantum gravity, using the spinfoam Barrett-Crane vertex. We complete the calculation of the remaining components. We find that, under our assumptions, the Barrett-Crane vertex does not yield the correct long distance limit. We argue that the problem is general and can be traced to the intertwiner-independence of the Barrett-Crane vertex, and therefore to the well-known mismatch between the Barrett-Crane formalism and the standard canonical spin networks. In a companion paper we illustrate the asymptotic behavior of a vertex amplitude that can correct this difficulty.Comment: 31 page

    Non-Linear Effects in Non-Kerr spacetimes

    Full text link
    There is a chance that the spacetime around massive compact objects which are expected to be black holes is not described by the Kerr metric, but by a metric which can be considered as a perturbation of the Kerr metric. These non-Kerr spacetimes are also known as bumpy black hole spacetimes. We expect that, if some kind of a bumpy black hole exists, the spacetime around it should possess some features which will make the divergence from a Kerr spacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko-Novikov spacetime.Comment: 8 pages, 3 Figures; to appear in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" (2012

    Momentum dependence of orbital excitations in Mott-insulating titanates

    Full text link
    High-resolution resonant inelastic x-ray scattering has been used to determine the momentum dependence of orbital excitations in Mott-insulating LaTiO3_3 and YTiO3_3 over a wide range of the Brillouin zone. The data are compared to calculations in the framework of lattice-driven and superexchange-driven orbital ordering models. A superexchange model in which the experimentally observed modes are attributed to two-orbiton excitations yields the best description of the data.Comment: to appear in PR

    Orbital excitations in LaMnO3_3

    Get PDF
    We study the recently observed orbital excitations, orbitons, and treat electron-electron correlations and lattice dynamics on equal footing. It is shown that the orbiton energy and dispersion are determined by both correlations and lattice-vibrations. The electron-phonon coupling causes satellite structures in the orbiton spectral function and the elementary excitations of the system are mixed modes with both orbital and phonon character. It is proposed that the satellite structures observed in recent Raman-scattering experiments on LaMnO3_3 are actually orbiton derived satellites in the phonon spectral function, caused by the phonon-orbiton interaction.Comment: 4 pages, 3 figures embedde

    Odd-even mass differences from self-consistent mean-field theory

    Full text link
    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form C/A^alpha . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects; (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel; (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences.Comment: 13 pages, 9 figure

    SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method

    Get PDF
    Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the ´standard candle method´ to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.Fil: de Jaeger, T.. University of California at Berkeley; Estados UnidosFil: Galbany, L.. University of Pittsburgh at Johnstown; Estados UnidosFil: Filippenko, A. V.. University of California at Berkeley; Estados UnidosFil: González Gaitán, S.. Universidad de Chile; ChileFil: Yasuda, N.. University of Tokio; JapónFil: Maeda, K.. University of Tokio; JapónFil: Tanaka, M.. University of Tokio; JapónFil: Morokuma, T.. University of Tokio; JapónFil: Moriya, T. J.. National Astronomical Observatory of Japan; JapónFil: Tominaga, N.. University of Tokyo; JapónFil: Nomoto, Ken’ichi. University of Tokyo; JapónFil: Komiyama, Y.. National Astronomical Observatory of Japan; JapónFil: Anderson, J. P.. European Southern Observatory; ChileFil: Brink, T. G.. University of California at Berkeley; Estados UnidosFil: Carlberg, R. G.. University of Toronto; CanadáFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. University of Tokyo; JapónFil: Hamuy, M.. Universidad de Chile; ChileFil: Pignata, G.. Universidad Andrés Bello; ChileFil: Zheng, W.. University of California at Berkeley; Estados Unido
    • …
    corecore