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Orbital Excitations in LaMnO3
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We study the recently observed orbital excitations, orbitons, and treat electron-electron correlations and
lattice dynamics on an equal footing. It is shown that the orbiton energy and dispersion are determined
by both correlations and lattice vibrations. The electron-phonon coupling causes satellite structures in the
orbiton spectral function and the elementary excitations of the system are mixed modes with both orbital
and phonon character. It is proposed that the satellite structures observed in recent Raman-scattering
experiments on LaMnO3 are actually orbiton derived satellites in the phonon spectral function, caused
by the phonon-orbiton interaction.
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Elementary properties of electrons in atoms and solids
are determined by their charge and spin, but in many cor-
related electron materials also by their orbital degree of
freedom [1,2]. In a free transition metal atom, with an
open d shell, the 3d energy levels are fivefold orbitally
degenerate, where each orbital state corresponds to a dif-
ferent quadrupolar charge distribution in real space. In
correlated Mott insulators, among which there are many
transition metal oxides (TMO’s), monopolar charge exci-
tations, that involve moving charge from one atom to an-
other, are possible only at high energies because of the
large Coulomb interaction between electrons. However,
low energy multipolar charge excitations—corresponding
to orbital excitations—are possible as they can be locally
charge neutral.

In a solid the orbital degeneracy of a free ion is lifted.
There are two physically distinct mechanisms. One pos-
sibility is that the electron-electron interaction splits the
states via the superexchange and in this way couples or-
bitals to the spin and relates orbital to magnetic order
[2]. On the other hand, also the electron-phonon in-
teraction, which gives rise to orbital order accompanied
by a Jahn-Teller lattice distortion [3], can lift the de-
generacy. The resulting orbital order is found in many
TMO’s, ranging from titanates (e.g., YTiO3 [4]), vana-
dates (e.g., V2O3 [5], LiVO2 [6], YVO3 [7]) and mangan-
ites (e.g., LaMnO3 [8], Nd1�2Sr1�2MnO3 [9]), to cuprates
(e.g., KCuF3 [2]). The quadrupolar charge ordering—
orbital ordering—should give rise to elementary excita-
tions with orbital signature, as the order causes a breaking
of symmetry in the orbital sector. The existence of such ex-
citations, orbitons, was predicted in the 1970s and theoreti-
cally studied ever since [2,10–12], but only very recently
orbitons were observed for the first time in a Raman scat-
tering experiment on LaMnO3 [13]. The observed orbitons
were interpreted by some as being due to electron correla-
tions [13], but others suggest that they originate from the
electron-lattice coupling [14]. This motivates us to address
the question of the origin of the orbitons, also because it
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is important to establish the precise nature of the orbitons
as they, in turn, have a large effect on spin [15,16] and
monopolar charge excitations [17,18].

We use a realistic model Hamiltonian for LaMnO3 that
incorporates both superexchange and electron-phonon cou-
pling. We study the Hamiltonian first in the localized limit
in order to gain more physical insight into the problem.
This approach illustrates that for ground-state properties
it is usually sufficient to treat the Jahn-Teller phonons as
classical entities [19], but that for orbital dynamics it is es-
sential to treat the lattice vibrations quantum mechanically.
The full calculation shows that in LaMnO3 the orbiton
has exchange and lattice character: its energy and dis-
persion are determined by both correlations and phonons.
We propose that the peaks in the Raman-scattering data on
LaMnO3 [13], are orbiton derived satellites in the phonon
spectral function, which arise due to the mixing of the or-
bital and phonon modes.

Hamiltonian.—We consider the twofold degenerate
manganese eg states, with one electron per site. The elec-
tron can either be in the x2 2 y2 or 3z2 2 r2 orbital, or in
any linear combination of these two states. The interaction
between neighboring orbitals is mediated by superex-
change and electron-phonon (e-p) interaction couples the
electron to the twofold degenerate Jahn-Teller phonons
that have eg symmetry. We also take into account the dis-
persion of these phonons. Let us split up the Hamiltonian
in an orbital, e-p and free phonon part: H � Horb 1

Hep 1 Hph, with

H0
orb 1 H0

e-p �
X
�ij�G

JGTG
i TG

j 1 2g
X

i

tz
i Q3i 1 tx

i Q2i ,

(1)

where the sum is over neighboring sites �ij� along the
G � a, b, c crystallographic axes. The orbital operators
TG can be expressed in terms of the Pauli matrices t:
T

a�b
i � �tz

i 6
p

3 t
x
i ��2, and Tc

i � t
z
i . The e-p coupling

constant is denoted by g and the phonon operators of the
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so-called Q2 and Q3 Jahn-Teller modes with eg symmetry

are Q2�3i � q
y
2�3i 1 q2�3i . The free phonon part of the

Hamiltonian is then

H0
ph � v0

X
i

�qy
3iq3i 1 q

y
2iq2i� 1 v1

X
�ij�G

QG
i QG

j , (2)

where the local phonon energy is given by v0 and the
nearest neighbor coupling between the phonons by v1.
The coupled Jahn-Teller modes along the three spatial axes
are Q

a�b
i � �Q3i 6

p
3 Q2i��2 and Qc

i � Q3i [20]. Note
that the orbital excitations are locally charge neutral and
do therefore not couple to breathing mode phonons.

The Hamiltonian, Eqs. (1) and (2), is general and
one needs to make it more specific in order to describe
LaMnO3. This is a prototype of an orbital ordered and
Jahn-Teller distorted system and its crystallographic
structure basically consists of corner connected MnO6
octahedra, where the space between octahedra is filled
with Lanthanum atoms. Because of the correlation and
Jahn-Teller coupling the octahedra are elongated, with the
axis of elongation along the crystallographic a direction
on one sublattice, and along the b direction on the other,
such that the reciprocal lattice vector for the orbital order
is Q � �p, p, 0�. An intersite phonon coupling arises
because the elongation of a MnO6 octahedron induces
a contraction of the neighboring octahedron, and vice
versa, as the octahedra have one corner in common. The
orbital order is formally incorporated in the Hamiltonian
by performing a rotation of the T operators [11], with
equal orbital exchange constants Ja � Jb � J along the
two axes in the plane.

Transformations.— In analogy with linear spin wave
theory, the orbital modes can be found by performing a
Holstein-Primakov transformation [11]. We introduce on
each site i the bosonic orbital operators q

y
1i and q1i : t

z
i �

1
2 2 q

y
1iq1i and t

x
i �

1
2 �qy

1i 1 q1i�. We see from Eq. (3)
that this transformation introduces a term that is linear in
the phonon mode Q3 in He-p. This is a consequence of
the long range orbital order that we assumed to be present
from the beginning: the lattice deforms according to the
symmetry of the occupied orbital on each site. The linear
term can be gauged away by introducing q3 ! q3 1 h,
where the shift h is given by h � g��v0 2 6v1�. After
this shift we collect the quadratic and cubic terms in the
bosonic operators and find in Fourier space

Horb �
X
k

�3J 1 4gh�qy
1kq1k 2

Jg1k

4
Q1kQ12k , (3)

He-p � g
X
k,q

2q
y
1k2qq1kQ3q 1 Q1kQ22k , (4)

Hph � v0

X
k

∑
q
y
3kq3k 1 q

y
2kq2k

1
v1

2
�g2kQ2kQ22k 2 3gkkQ3kQ32k�

∏
, (5)
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with Qnk � q
y
nk 1 qn2k and the dispersions g1k �

gkk 1 g�kJc�J, g2k � 2g�k 2 gkk , where gkk �
�coskx 1 cosky��2 and g�k � coskz [21].

Three important consequences of the orbiton-phonon
coupling are present in Eqs. (3)–(5). First, the coupling to
the lattice moves the orbiton to higher energy by an amount
4gh. This shift has a straightforward meaning physically:
it is the phonon contribution to the crystal-field splitting
of the eg states caused by the static Jahn-Teller lattice de-
formation [22]. If, however, an orbital excitation is made,
it strongly interacts with the Q3 phonon [Eq. (4)], so that
the orbital excitation can be dynamically screened by the
Jahn-Teller phonons. The crystal-field splitting and screen-
ing are strongly competing as both are governed by the en-
ergy scale set by the e-p coupling. Finally, the orbital and
Q2 phonon modes mix, as is clear from the second term
of He-p. This implies that the true eigenmodes of the cou-
pled orbital-phonon system have both orbital and phonon
character.

Localized limit.—We illustrate the three physical effects
of the orbiton-phonon coupling, discussed above, by con-
sidering the Hamiltonian of Eqs. (3)–(5) first in the local-
ized limit, neglecting all dispersion. The Hamiltonian then
reduces to

Hloc � �J̄ 1 2gQ3�qy
1 q1 1 v0�qy

3 q3 1 q
y
2 q2�

1 gQ1Q2 , (6)

with J̄ � 3J 1 4gh, which is the sum of the local
orbital exchange energy and static phonon contribution
to the crystal-field splitting. The Hamiltonian without
the last term is exactly solvable by a canonical trans-
formation [23] so that we can obtain the expressions
for the 6 by 6 matrix of bosonic Green’s functions
D11�n, t 2 t0� � 2i�jTqy

n �t�qn�t0�j�, D12�n, t 2 t0� �
2i�jTqn�t�qn�t0�j�, D21�n, t 2 t0� � 2i�jTqy

n �t�qy
n �t0�j�,

D22�n, t 2 t0� � 2i�jTqn�t�qy
n �t0�j�, with n � 1, 2, 3.

The last term in Eq. (6) couples the orbiton and Q2

phonon mode and introduces a self energy [24]. We use
the on-site Jahn-Teller vibrational energy v0 � 80 meV
as a unit of energy, and J � v0�2, in accordance with
Refs. [13,17]. In Fig. 1a the calculated orbiton spectral
function, 2

1
p ImD�1, v�, is plotted. For small e-p

coupling g, most of the spectral weight is in the pole at
v � 3J, and phonon satellites with decreasing intensity
are present at higher frequencies, at energy intervals
v0. The satellites are also known as Frank-Condon side
bands [12], and their weight increases with increasing
e-p coupling strength. For larger coupling constants the
average orbiton excitation energy increases, caused by
the increase of the crystal-field splitting, but low and high
energy satellites are always present due to the interaction
of the orbital excitation with lattice vibrations.

The mixing of orbital and phonon mode gives rise to
one extra phonon satellite in the orbiton spectral function,
at frequencies below v0. In Fig. 1b we see that, vice versa,
due to the mixing a low intensity orbital satellite at �3J
217202-2
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FIG. 1. (a) Orbiton (Q1) and (b) phonon (Q2) spectral function
in the localized limit. The first pole due to the orbital exchange
is indicated at 3J . In the orbital spectrum the static crystal-
field energy J̄ is indicated by =. The spectral weight in (b) is
multiplied by 10 for v . v0.

is present in the Q2 phonon spectral function. The Q2

vibrational mode softens with increasing g, in contrast to
the Q3 mode, which is not affected by the e-p interaction.

Full Hamiltonian.—The quadratic parts of the Hamilto-
nian in Eqs. (3)–(5) can be diagonalized by a generalized
Boguliobov transformation. For the moment we do not
consider the cubic terms, that give rise to the dynamical
screening of the orbital excitation. In the transformed
operators the Hamiltonian is Hquad �

P
nk enka

y
nkank,

with q
y
nk �

P
m uk

nma
y
mk 1 yk

nmam2k. The energies of
the eigenstates are given by

e2
1,2k � zk 1 xk 6 ��zk 2 xk�2 1 4g2J̄v0�1�2 ,

e2
3k � v0�v0 2 6gkkv1� ,

(7)

with zk � J̄�J̄ 2 g1k ��2 and xk � v0�v0 1 2g2kv1��2.
The analytical expressions for uk

nm and yk
nm are rather in-

volved. In Fig. 2 the dispersion of the eigenmodes e1k

and e2k are shown for different sets of parameters, where
we used Jc�J � 0.5 [13]. The modes with predominantly
phonon character are centered around E � v0, and with
orbital character around the crystal-field energy J̄. For
the parameters indicated in Fig. 2b the wave functions of
the low energy excitations have on average 95% phonon
character and the high energy modes 95% orbital charac-
ter. Note that the orbiton dispersion is almost entirely due
to the exchange coupling J and that via the e-p coupling
the orbiton dispersion reflects itself in the effective phonon
dispersion.

We now consider the interaction between the eigen-
modes via the cubic term in Eq. (4). The cubic terms can
be taken into account in a diagrammatic expansion. The
first nonzero diagram corresponds to an orbiton that ex-
cites a phonon, propagates and absorbs the phonon again,
which is a second order process. We calculate the self-
energy due to this process self-consistently, i.e., instead of
the bare orbiton propagator, we use the orbiton propaga-
tor dressed with phonon excitations. This is equivalent to
217202-3
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FIG. 2. Orbiton and phonon dispersion, neglecting dynamical
effects due to the e-p coupling; (a) without e-p coupling g
and without bare phonon dispersion, (b) g�v0 � 1�2, no bare
phonon dispersion, and (c) g�v0 � 1�2, finite bare phonon dis-
persion. The points of high symmetry in the Brillouin zone
correspond to those of Ref. [13].

the self-consistent Born approximation, as is used, for in-
stance, to calculate properties of a single hole in the t-J
like models [17,25]. This approximation works exception-
ally well in t-J like models, for the problem of a single
hole that is strongly coupled to magnons, or phonons [26],
giving us confidence in its accuracy for the problem of
a single orbital excitation coupled to phonons, which we
consider here.

After the Bogoliubov transformation, the single cubic
term in Eq. (4) maps into eight different nonzero cubic
combinations of the new ank operators. We can make
use of the observation that, in the parameter regime that
we consider, the eigenmodes e1,2k have almost entirely or-
biton c.q. phonon character. The calculated self-energy is
therefore dominated by only one of the eight cubic com-
binations of ank operators, which is at least an order of
magnitude larger than other terms. Physically, this term is
due to the orbiton-phonon scattering process described in
the previous paragraph.

The self-consistent calculation is performed numeri-
cally, taking about 104 points in the Brillouin zone and
an energy grid with mesh size v0�100. The resulting
orbiton spectral function at two high symmetry points in
the Brillouin zone is shown in Fig. 3a, where we used
the same parameters as in Fig. 2c. Comparing these two
figures, we see that due to the dynamical e-p coupling the
poles with mainly orbital character are shifted to lower
frequency and that at higher frequency phonon induced
satellites develop. This is not unexpected, as the same
happens for the system in the localized limit (see Fig. 1a).
A closer look to the orbital spectrum at the G point,
however, reveals also that the effective orbital dispersion
is v0�2, whereas the free orbital dispersion is v0. The
reduced dispersion can be understood as a consequence of
polaronic band narrowing: the effective mass of the orbital
excitation increases because of its dressing with phonons.

Finally we can compare the calculated spectral function
of the Raman-active Ag and B1g phonon modes, shown in
217202-3
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FIG. 3. (a) Orbiton spectral function at the G and X-point, g �
v0�2. (b) Spectrum of the Raman-active Ag and B1g phonon
modes for v1�v0 � 0.05 and g�v0 � 0.35. The experimental
peak positions are indicated by =. For v . v0 the spectral
weight is multiplied by 10, g � 0.35v0, v1�v0 � 0.05.

Fig. 3b, with experiment [13]. The main phonon lines be-
low v0 and the weak orbiton induced satellites at �2v0
are in excellent agreement with experiment. The orbiton
satellites are, just as in the localized limit (see Fig. 1b),
due to the mixing of orbital and phonon modes. The value
of the e-p coupling that is used in the phonon calculation,
g�v0 � 0.35, corresponds to rather weak electron-phonon
coupling, in contrast to Ref. [12]. If we were to use a
larger value of g, the orbiton dispersion would become
too small. A way to determine the e-p coupling regime
experimentally is to check for additional satellites in the
Raman spectrum at about v � 3v0, which for the cou-
pling strength in the present calculation have low intensity,
but would have large intensity if the system were in the
strong coupling regime [12]. It is crucial that we took the
phonon-dynamics into account, as a purely static Jahn-
Teller distortion (as in Ref. [13], see also Fig. 2c) would
lead to an orbital dispersion that is about a factor of 2
too large. We interpret the Raman peaks around 150 meV
as orbiton satellites of the phonon peaks around 80 meV,
which would disappear without electron-phonon coupling.
This is in contrast to Saitoh et al. [13], where the peaks
are due to different Raman scattering mechanisms and are
assumed to be independent.

Conclusions.—We calculated the orbiton and phonon
properties for a realistic model Hamiltonian for LaMnO3
and compare the results with Raman-scattering data. We
treat electron-electron correlations and lattice dynamics on
equal footing and have shown that the orbiton dispersion,
which is mainly caused by correlation effects, is strongly
reduced by the electron-phonon coupling. This coupling
also mixes the orbiton and phonon modes and causes satel-
lite structures in the orbiton and phonon spectral function.
The elementary excitations of the system, in other words,
are mixed modes with both orbital and phonon character.
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This leads us to interpret the features around 150 meV in
recent Raman-scattering experiments on LaMnO3 as or-
biton derived satellites in the phonon spectral function.
These satellites should also be observable in other experi-
ments that probe phonon dynamics, for instance in neutron
scattering.

I thank D. Khomskii and G. Khaliullin for fruitful
discussions.
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