542 research outputs found
Microwave radiative transfer studies of precipitation
Since the deployment of the DMSP SSM/I microwave imagers in 1987, increased utilization of passive microwave radiometry throughout the 10 - 100 GHz spectrum has occurred for measurement of atmospheric constituents and terrestrial surfaces. Our efforts have focused on observations and analysis of the microwave radiative transfer behavior of precipitating clouds. We have focused particular attention on combining both aircraft and SSM/I radiometer imagery with ground-based multiparameter radar observations. As part of this and the past NASA contract, we have developed a multi-stream, polarized radiative transfer model which incorporates scattering. The model has the capability to be initialized with cloud model output or multiparameter radar products. This model provides the necessary 'link' between the passive microwave radiometer and active microwave radar observations. This unique arrangement has allowed the brightness temperatures (TB) to be compared against quantities such as rainfall, liquid/ice water paths, and the vertical structure of the cloud. Quantification of the amounts of ice and water in precipitating clouds is required for understanding of the global energy balance
Drop Axis Ratio Distributions in Stratiform and Convective Rain
A fully calibrated low profile 2D video disdrometer (2DVD) has been recording many different rainfall events in Northern Alabama (USA) since June 2007. An earlier publication reported drop shapes and axis ratio distributions determined for some of the events. For one of the cases examined, a noticeable shift in the 3.5 - 3.75 mm drop axis ratio distribution was noted. In this paper, we extend the earlier work by separating the 2DVD measurements into stratiform and convective rain. The separation is made possible by using the minute-by-minute drop size distribution (DSD) measured by the 2DVD. The 1-minute DSDs are fitted to a gamma distribution, and using a simple indexing technique which involves two of the fitted parameters, periods of convective and stratiform rain are separated for a given event. The output of the DSD indexing technique is qualitatively confirmed by comparing with simultaneous time series observations from a co-located UHF profiler which continuously records height profiles of reflectivity, Doppler mean and spectral width, all of which enable the identification of bright-band periods and, furthermore, periods of moderate and deep convection. Excellent consistency is found between the output of the DSD-based separation method and the profiler observations. Next, we utilize the output of DSD index-based separation method to flag the periods of severe convection for a given event. Drop axis ratios during the flagged periods are derived and compared with those during stratiform rain periods. Five cases have been considered. Axis ratio distributions do not show appreciable differences between stratiform and convective periods for four of the cases. The fifth case (the same case as reported earlier) shows a shift in the 3.5 - 3.75 mm drop axis ratios during a prolonged period of convection. The contoured shapes for these drops determined from the 2DVD camera data indicate the possibility of non-axisymmetric oscillations, compared with the contoured images for other events which fit well to our reference drop shapes. For all of above cases, observations from a C-band polarimetric radar - situated 15 km away are examined. The variations between the co-polar radar reflectivity and the differential reflectivity as well as the specific differential phase are compared with the 2DVD data based scattering calculations for the 5 events. The implications will be discussed
Very Large Rain Drops from 2D Video Disdrometers and Concomitant Polarimetric Radar Observations
Drop size distribution (DSD) measurements using ground-based disdrometers (point measurements) have often been used to derive equations to relate radar observations to the integral rainfall parameters (Atlas et al. 1999, Bringi et al., 2003, Kozu et al., 2006, Tokay and Short, 1996, Ajayi and Owolabi, 1987, Battan, 1973). Disdrometers such as JWD, MRR and several others have a major limitation in measuring drops with equi-volume diameters (D(sub eq)) larger than 5 mm because they often rely on the velocity-diameter relationship which plateaus beyond this diameter range (Atlas et al., 1973, Gunn & Kinzer, 1949). Other disdrometers such as Parsivel also lack accuracy beyond this diameter range. The 2D video disdrometer (2DVD: Schnhuber et al., 2008) on the other hand gives drop-shape contours and velocities for each individual drop/hydrometeor falling through its sensor area; this provides a unique opportunity to study the role of very-large drops on radar measurements in particular those with polarimetric radar capability where DSDs with a significant component of very large drops may require special consideration given that the differential reflectivity and other polarimetric radar parameters including attenuation-correction methods will be sensitive to the concentrations of these large drops. A recent study on the occurrence of large drops by Gatlin et al. (2014) has compiled a large and diverse set of measurements made with the 2D video disdrometers from many locations around the globe. Some of the largest drops found in this study were 9 mm D(sub eq) and larger, and in this paper, we report on three such events, with maximum D(sub eq's) of 9.0, 9.1 and 9.7 mm, which occurred in Colorado, Northern Alabama, and Oklahoma, respectively. Detailed examination of the 2DVD data - in terms of shapes and fall velocities - has confirmed that these are fully-melted hydrometeors, although for the last case in Oklahoma, a bigger and non-fully-melted hydrometeor was also observed. All three events were also captured by polarimetric radars, namely the S-band CHILL radar operated by Colorado State University (Brunkow et al., 2000), the C-band ARMOR radar (Petersen et al., 2007) operated by University of Alabama in Huntsville, and NEXRADKVNX, operated by the US National Weather Service, respectively. For the last event, several other radar observations were also made, including two X-band radars operated by the US Dept. of Energy. Analyses of 2DVD data in conjunction with the corresponding radar observations are presented, along with some discussion on sampling issues related to the measurements of such large rain drops. The latter is addressed using maximum diameter D(sub max) measurements from 1-minute DSDs using two collocated 2DVDs for 37 events in Huntsville
Drop Size Distribution Measurements Supporting the NASA Global Precipitation Measurement Mission: Infrastructure and Preliminary Results
Global Precipitation Measurement Mission (GPM) retrieval algorithm validation requires datasets that characterize the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (5 -- 50 km). Key to this process is the combined use of disdrometer and polarimetric radar platforms. Here the disdrometer measurements serve as a reference for up-scaling dual-polarimetric radar observations of the PSD to the much larger volumetric sampling domain of the radar. The PSD observations thus derived provide a much larger data set for assessing DSD variability, and satellite-based precipitation retrieval algorithm assumptions, in all three spatial dimensions for a range of storm types and seasons. As one component of this effort, the GPM Ground Validation program recently acquired five 3rd generation 2D Video disdrometers as part of its Disdrometer and Radar Observations of Precipitation Facility (DROP), currently hosted in northern Alabama by the NASA Marshall Space Flight Center and the University of Alabama in Huntsville. These next-generation 2DVDs were operated and evaluated in different phases of data collection under the scanning domain of the UAH ARMOR C-band dual-polarimetric radar. During this period approximately 7500 minutes of PSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSDs were then used as input to T-matrix code for computation of polarimetric radar moments at C-band. The combined dataset was then analyzed with two basic objectives in mind: 1) the investigation of seasonal variability in the rain PSD parameters as observed by the 2DVDs; 2) the use of combined polarimetric moments and observed gamma distribution parameters in a functional form to retrieve PSD parameters in 4-D using the ARMOR radar for precipitation occurring in different seasons and for different rain system types. Preliminary results suggest that seasonal variations in the DSD parameters do occur, but are most pronounced when comparing tropical PSDs to either winter or summer convective precipitation. For example the previously documented shift to relatively smaller drop diameters in higher number concentrations for equivalent rain rate bins was observed in tropical storm rainbands occurring over Huntsville. On a more inter seasonal basis empirical fits between parameters such as D0 and ZDR do not appear to exhibit robust seasonal biases- i.e., one fit seems to work for all seasons within acceptable standard error (O[10%]) for estimates of D0. In polarimetric retrievals of the vertical variability in PSD (rain layer) for a tropical rainband we find that the Do varies with height when partitioned by specified precipitation categories (e.g., convective or stratiform, heavy and light stratiform etc.) but this variation is of order 10-20% and is smaller than the difference in D0 observed between the basic delineation of convective and stratiform precipitation types. Currently we are expanding our analysis of the vertical structure of the PSD to include several seasonally and/or dynamically-different storm system types (e.g., winter convection and stratiform events; summer mid-latitude convective etc.) sampled by ARMOR. The study will present the results of our combined analyses
Drop Shapes Versus Fall Velocities in Rain: 2 Contrasting Examples
Rainfall retrievals from polarimetric radar measurements require the knowledge of four fundamental rain microstructure parameters, namely, drop size distribution, drop shape distribution, canting angles and drop fall velocities. Some recent measurements of all four parameters in natural rain are summarized in [1]. In this paper, we perform an in-depth analysis of two events, using two co-located 2D video disdrometers (2DVD; see [2]) both with high calibration accuracy, and a C-band polarimetric radar [3], located 15 km away. The two events, which occurred 7 days apart (on the 18th and the 25th of Dec 2009), had moderate-to-intense rainfall rates, but the second event had an embedded convection line within the storm. The line had passed over the 2DVD site, thus enabling the shapes and fall velocities to be determined as the line crossed the site. The first event was also captured in a similar manner by both the 2DVDs as well as the C-band radar. Drop fall velocity measurements for, say, the 3 mm drops show noticeable differences between the two events. Whereas for the first event, the velocity distribution showed a narrow and symmetric distribution, with a mode at the expected value (7.95 m/s, as given by the formula in [4]), the second event produced a wider distribution with a significant skewness towards lower velocities (although its mode too was close to the expected value). Moreover, the slower 3 mm drops in the second event occurred when the convection line was directly over the 2DVD site (03:35-03:45 utc), and not before nor after. A similar trend was observed in terms of the horizontal dimensions of the 3 mm drops, i.e. large fluctuations during the same time period, but not outside the period. Vertical dimensions of the drops also fluctuated but not to the same extent. Interestingly, the horizontal dimensions tended towards larger values during the 10-minute period, implying an increase in drop oblateness, which in turn indicates the possibility of the horizontal mode oscillation, one of the three fundamental modes of drop oscillations [5], albeit the most difficult one to excite
Use of Dual Polarization Radar in Validation of Satellite Precipitation Measurements: Rationale and Opportunities
Dual-polarization weather radars have evolved significantly in the last three decades culminating in the operational deployment by the National Weather Service. In addition to operational applications in the weather service, dual-polarization radars have shown significant potential in contributing to the research fields of ground based remote sensing of rainfall microphysics, study of precipitation evolution and hydrometeor classification. Furthermore the dual-polarization radars have also raised the awareness of radar system aspects such as calibration. Microphysical characterization of precipitation and quantitative precipitation estimation are important applications that are critical in the validation of satellite borne precipitation measurements and also serves as a valuable tool in algorithm development. This paper presents the important role played by dual-polarization radar in validating space borne precipitation measurements. Starting from a historical evolution, the various configurations of dual-polarization radar are presented. Examples of raindrop size distribution retrievals and hydrometeor type classification are discussed. The quantitative precipitation estimation is a product of direct relevance to space borne observations. During the TRMM program substantial advancement was made with ground based polarization radars specially collecting unique observations in the tropics which are noted. The scientific accomplishments of relevance to space borne measurements of precipitation are summarized. The potential of dual-polarization radars and opportunities in the era of global precipitation measurement mission is also discussed
Distributed Disdrometer and Rain Gauge Measurement Infrastructure Developed for GPM Ground Validation
Global Precipitation Mission (GPM)retrieval algorithm validation requires datasets characterizing the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (FOV;<10 km). Collection of this data provides a means to assess retrieval errors related to beam filling and algorithm PSD assumptions. Hence, GPM Ground Validation is developing a deployable network of precipitation gauges and disdrometers to provide fine-scale measurements of PSD and precipitation accumulation variability. These observations will be combined with dual-frequency, polarimetric, and profiling radar data in a bootstrapping fashion to extend validated PSD measurements to a large coverage domain. Accordingly, a total of 24 Parsivel disdrometers(PD), 5 3rd-generation 2D Video Disdrometers (2DVD), 70 tipping bucket rain gauges (TBRG),9 weighing gauges, 7 Hot-Plate precipitation sensors (HP), and 3 Micro Rain Radars (MRR) have been procured. In liquid precipitation the suite of TBRG, PD and 2DVD instruments will quantify a broad spectrum of rain rate and PSD variability at sub-kilometer scales. In the envisioned network configuration 5 2DVDs will act as reference points for 16 collocated PD and TBRG measurements. We find that PD measurements provide similar measures of the rain PSD as observed with collocated 2DVDs (e.g., D0, Nw) for rain rates less than 15 mm/hr. For heavier rain rates we will rely on 2DVDs for PSD information. For snowfall we will combine point-redundant observations of SWER distributed over three or more locations within a FOV. Each location will contain at least one fenced weighing gauge, one HP, two PDs, and a 2DVD. MRRs will also be located at each site to extend the measurement to the column. By collecting SWER measurements using different instrument types that employ different measurement techniques our objective is to separate measurement uncertainty from natural variability in SWER and PSD. As demonstrated using C3VP polarimetric radar, gauge, and 2DVD/PD datasets these measurements can be combined to bootstrap an area wide SWER estimate via constrained modification of density-diameter and radar reflectivity-snowfall relationships. These data will be combined with snowpack, airborne microphysics, radar, radiometer, and tropospheric sounding data to refine GPM snowfall retrievals. The gauge and disdrometer instruments are being developed to operate autonomously when necessary using solar power and wireless communications. These systems will be deployed in numerous field campaigns through 2016. Planned deployment of these systems include field campaigns in Finland (2010), Oklahoma (2011), Canada (2012) and North Carolina (2013). GPM will also deploy 20 pairs of TBRGs within a 25 km2 region along the Virginia coast under NASA NPOL radar coverage in order to quantify errors in point-area rainfall measurements
Construction of a random signal with a specific Psd and a uniform Pdf
The performance of a dynamic element matching (DEM) flash digital to analog converter (DAC) can be improved by controlling the DEM DAC\u27s interconnection network with a random signal that has a specific power spectral density (PSD) and a uniform probability distribution function (PDF). Many algorithms exist for generating a random signal with a white PSD and a uniform PDF, but there exists only one algorithm for generating a random signal with a specific PSD and a particular PDF. For DEM DAC applications, the random signal must be generated at the speed of the DEM DAC. However, a real time implementation of this existing algorithm is too computation intensive for a typical DEM DAC. In this thesis, an algorithm that constructs a uniformly distributed random signal with a specific PSD is developed. This uniformly distributed colored random signal is implemented using a finite state machine (FSM) and Linear Feedback Shift Registers (LFSRs)
Use of 2d-video Disdrometer to Derive Mean Density-size and Ze-SR Relations: Four Snow Cases from the Light Precipitation Validation Experiment
The application of the 2D-video disdrometer to measure fall speed and snow size distribution and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power law is described. Inversion of the methodology proposed by Bhm provides the pathway to use measured fall speed, area ratio and '3D' size measurement to estimate the mass of each particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with supporting data from other instruments such as Precipitation Occurrence Sensor System (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C9 band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are in good agreement with a network of seven snow gauges and outperform the accumulations derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The normalized bias between radar-derived and gauge accumulation is reduced from 96% when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. The normalized standard error is also reduced significantly from 66% to 31%. For two of the days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed significant differences in spatial variability. Liquid water path estimates from radiometric data also showed significant differences between the two cases. Examination of SVI particle images at the measurement site corroborated these differences in terms of unrimed versus rimed snow particles. The findings reported herein support the application of Bhm's methodology for deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer
Indigenous African-Centred Organizational Change: Building Capacity at a Grassroots B3 Organization
Nakupenda Community Services (NCS) is a B3 organization based in Ontario Canada. At NCS there are several valuable programs serving the everyday needs of clients. While the services are valued by the community, the internal challenge within the organization is the lack of capacity to lead all programs. Compounding this problem is the demand for more programs and services given the impacts of the recent pandemic. The very active board of directors and employees have made significant efforts to meet the needs of clients, but the problem of capacity persists and negatively impacts service delivery as employees and leaders tend to experience burnout which therefore impacts the retention rate at the organization. The problem of practice being investigated is the lack or organizational capacity to meet outcome expectations at NCS. While funding plays a major role in the lack of human capital the organization possesses, three potential solutions were identified and a merging of two key solutions was selected as the best approach for this Organizational Improvement Plan (OIP). This solution reduces the number of programs being facilitated by the organization and ensures that the programs that remain are managed and lead effectively. To supplement the program reduction, the active participation in a network of Black organizations, identified as a Black ecosystem, is established. Developed through an Indigenous African-centred lens, Ubuntu and highlighting the principles of the Nguzo Saba framework (unity, self-determination, collective-work and responsibility, cooperative economics, purpose, creativity, and faith) collective action will achieve the improvement necessary for NCS
- …
