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ABSTRACT 1�

The application of the 2D-video disdrometer to measure fall speed and snow size distribution 2�

and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power 3�

law is described. Inversion of the methodology proposed by Böhm provides the pathway to use 4�

measured fall speed, area ratio and ‘3D’ size measurement to estimate the mass of each 5�

particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with 6�

supporting data from other instruments such as Precipitation Occurrence Sensor System 7�

(POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C-8�

band radars. The radar-based snow accumulations using the 2DVD-derived Ze-SR relation are 9�

in good agreement with a network of seven snow gauges and outperform the accumulations 10�

derived from a climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). 11�

The normalized bias between radar-derived and gauge accumulation is reduced from 96% 12�

when using the fixed FMI relation to 28% when using the Ze-SR relations based on 2DVD data. 13�

The normalized standard error is also reduced significantly from 66% to 31%. For two of the 14�

days with widely different coefficients of the Ze-SR power law, the reflectivity structure showed 15�

significant differences in spatial variability. Liquid water path estimates from radiometric data 16�

also showed significant differences between the two cases. Examination of SVI particle images 17�

at the measurement site corroborated these differences in terms of unrimed versus rimed snow 18�

particles. The findings reported herein support the application of Böhm’s methodology for 19�

deriving the mean density-size and Ze-SR power laws using data from 2D-video disdrometer.  20�

 �21�



1. Introduction 22�

The measurement of liquid equivalent snow rate (SR) from radar has long been 23�

recognized as a difficult problem in quantitative precipitation estimation (QPE) but one 24�

of great importance for weather forecasting, hydrology, detection of aviation hazards 25�

and other remote sensing applications (e.g., ground validation for microwave radiometry 26�

from space).  The validation of QPE by radar is difficult at best given the fact that 27�

accurate measurement of winter precipitation by gauges remains challenging due to the 28�

sheer variety and variability of physical properties which can change dramatically with, 29�

for example, relatively small changes in environmental conditions. Some of the 30�

important physical properties that one could list, for example, are (i) ‘3D’-size, (ii) 31�

terminal fall speed, (iii) particle size distribution, (iv) density (or, mass), (v) shape, (v) 32�

composition and (vi) porosity. Some of these attributes are not independent as 33�

evidenced by the large literature that exists in describing density (or, mass)-size and fall 34�

speed-size relations for different kinds of winter precipitation (e.g., Pruppacher and Klett 35�

2010; Mason 2010). The fall speed is also dependent on shape, composition and 36�

porosity. Thus, it follows that fall speed is fundamental to characterization of frozen 37�

precipitation followed by a good measure of ‘3D’-size, particle size distribution and 38�

porosity. From the radar reflectivity perspective, the ‘3D’-size and associated size 39�

distribution and the density (or, mass)-size relation is of fundamental importance. For 40�

Rayleigh scattering the reflectivity is directly related to E[m(D)2] where m is the particle 41�

mass and E stand for expectation or integration over the size distribution (Ryzhkov et al. 42�

1998); however, the mass is not easily measured on a particle-by-particle basis. On the 43�

other hand, the liquid equivalent snow rate (SR) is directly related to E[m(D) Vf(D)] 44�



where Vf  is the fall speed. It follows that empirical Ze-SR power laws can be derived if 45�

mass-D and Vf-D power laws are assumed (e.g., Matrosov et al. 2009) and the size 46�

distribution is measured (e.g., Sekhon and Srivastava 1970). The simulations of 47�

Matrosov et al. (2009) suggest that the overall uncertainty of estimating SR from 48�

reflectivity measurements can be as high as a factor of 3 or so. A more direct method is 49�

to correlate Ze from radar with SR measured by snow gauges (e.g., Fujiyoshi et al. 1990 50�

and references therein) which can lead to climatological Ze-SR power law. The advent 51�

of optical-based surface disdrometers, however, has led to more accurate methods to 52�

characterize the physical properties of snow, leading to m-D, Vf-D and area ratio-D 53�

relations that are consistent via hydrodynamic theory (Böhm 1989; Mitchell 1996; 54�

Heymsfield and Westbrook 2010). Combined with scattering models (size, shape, 55�

dielectric constant), it leads to more consistent Ze-SR power laws (Huang et al. 2011). 56�

   57�

There are a number of disdrometers (mainly optical) that are available (some 58�

commercial and others in the research category) that measure a sub-set of the physical 59�

parameters listed above (only instruments that can image the particles are considered 60�

here). Hanesch (1999) and Schönhuber et al. (2000) used the 1st generation 2D-video 61�

disdrometer (2DVD) which measures fall speed and two orthogonal images from which 62�

an apparent volume (also, size distribution based on ‘3D’-size) as well as an estimate of 63�

porosity (via the area ratio to be described later) can be computed. Later, Brandes et al. 64�

(2007) used the 2DVD to estimate the coefficient and exponent of a mean density-D0 65�

power law (mainly for fluffy snow aggregates) by comparing 15-min liquid water 66�

accumulations with a collocated Geonor gauge (D0 is the median volume diameter of 67�



the particle size distribution). They also examined the particle size distribution in detail 68�

by fitting with a gamma model and deriving correlations between the model parameters 69�

(e.g., shape parameter μ and slope parameter �). They conclude (in their Section 6, 70�

page 648) that, “…The video disdrometer is a powerful observational tool for studying 71�

the microphysical properties of winter storms”. Further, Brandes et al. (2008) 72�

investigated power law relation between terminal fall speed and size and its 73�

dependence on temperature. The use of radar and 2DVD for estimating density-size 74�

and Ze-SR power laws is described by Huang et al. (2010; 2011) whereas Zhang et al. 75�

(2011) demonstrated the importance of density-size power laws (empirically adjusted by 76�

fall speed) in comparing 2DVD-based reflectivity with ground radar. While the 2DVD is 77�

commercially available, a similar research instrument HVSD (Hydrometeor Velocity Size 78�

Detector; Barthazy et al. 2004) measures the fall speed and projected image in one 79�

plane. It has been used by Zawadzki et al. (2010) to investigate the natural variability of 80�

snow terminal velocity with size.  They concluded that the exponent of the terminal 81�

velocity-D power law could be fixed at 0.18, while the coefficient is variable from event-82�

to-event. Szyrmer and Zawadzki (2010) describe a methodology to derive the average 83�

relationship between terminal fall velocity and the mass of snowflakes via elaboration of 84�

the methodology of Böhm (1989) proposed by earlier Hanesch (1999); the latter used 85�

the 1st generation tall 2DVD design. In fact, the development of the HVSD by Barthazy 86�

et al. (2004) followed Hanesch and lead to a simpler instrument with two parallel light 87�

planes but with much slower line scan frequency camera. The work described herein 88�

follows Szyrmer and Zawadzki (2010) but uses the 2nd generation low profile 2DVD 89�



(Schöenhuber et al. 2008) to derive the Ze-SR power law with validation provided by a 90�

network of seven snow gauges. 91�

  92�

Another research instrument is the Snow Video Imager (SVI; Newman et al. 2009) 93�

which, unlike the line scan camera, uses a CCD (charge-coupled device) full frame 94�

camera (60 frames per second) and images are obtained almost simultaneously; 95�

however, it does not measure the fall speed. SVI software yields a size estimate of each 96�

particle as an equivalent diameter that corresponds to a circular equivalent-area 97�

diameter of the irregular shape (with holes filled). Some advantages of the SVI over the 98�

2DVD is that it has a large sample volume (twice that of the 2DVD), better pixel 99�

resolution (nominally 0.05 mm by 0.1 mm) and its measurements are less sensitive to 100�

wind. In this work, the SVI is mainly used to determine the particle size distribution for 101�

comparison with the 2DVD, and to examine samples of images to distinguish between 102�

unrimed and rimed snow particles. A new commercially available instrument is the Multi-103�

Angle Snowflake Camera (MASC; Garrett et al. 2012) which gives high resolution (10-104�

50 μm) photographs of snow particles from three viewing angles, along with their fall 105�

speed. One disadvantage is that the sample volume is small (about 1/10 of the 2DVD). 106�

  107�

This article is organized as follows. In Section 2 the specific details of estimating the 108�

apparent volume and ‘3D’-apparent diameter, the adjusted particle size distribution and 109�

the application of Böhm’s (1989) method are described. Section 3 constitutes the main 110�

bulk of the article and describes the 2DVD processing and derived products culminating 111�



in Ze-SR power laws for the four snow days, comparison of liquid equivalent snow 112�

accumulations derived from radar with a network of 7 snow gauges, and radar-based 113�

accumulation maps. A short summary and conclusions are given in Section 4.   114�

2. The basis for snow measurements using the 2D-video disdrometer 115�

2.1 The apparent volume and diameter 116�

The 2DVD gives two views (front and side views; actually silhouettes) of the particle in 117�

two orthogonal planes as shown in the example in Fig. 1. It is obvious that the ‘true’ 118�

volume of such an irregular particle cannot be calculated and thus we define here the 119�

apparent volume (VLapp) assuming that the particle is an ellipsoid. The apparent volume 120�

is defined as an average of two ellipsoidal volumes: 121�

����� � �� 	���
 � ��
������
���� �������)�122�

where the apparent diameter is Dapp and, 123�
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where, 125�
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The Ae1,2 are the shadow areas (see Fig. 1) from the two views. The second ellipsoid 129�

estimate, VLapp2, is defined as: 130�

������ � �� ��� ��'�(� � �'�(��������)�   131�



where, 132�

 133�
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In (5b) the Wmax equals the maximum width of the scan line or ‘slice’ (measured from left 136�

to right in Fig. 1); the subscripts 1,2 refer to maximum width as determined from each 137�

view. The method of calculating VLapp and Dapp here generally follows Hanesch (1999) 138�

which is somewhat different from Schönhuber et al. (2000) which was used later by 139�

Brandes et al. (2007).  Also, the apparent diameter (Dapp) is different from the ‘size’ 140�

measured by instruments that give the particle image in only one plane such as aircraft-141�

mounted imaging probes (which give the top view). The ‘size’ is often defined as the 142�

maximum distance between two pixels or the diameter of the smallest circle that 143�

completely circumscribes the image or the equivalent-area diameter (Hogan et al. 144�

2012). The latter also define the mean diameter as the mean of the particle dimensions 145�

in two orthogonal directions which they found to be better related to radar reflectivity.  146�

Since the true volume of snowflake is not known, the accuracy of our method of 147�

calculating VLapp cannot be determined. However, from the simulations of Wood et al. 148�

(2012) who used ellipsoidal shape models with canting it is can be inferred that the 149�

apparent diameter defined here gives a more ‘realistic’ measure of ‘3D’ size made 150�

possible by the availability of two orthogonal images from the 2DVD. 151�

 152�

2.2 Snow size distribution (SSD)   153�



In a certain time window (typically 60 seconds for 1-minute averaged size distributions), 154�

all ‘matched’ snow particles are sorted into M size bins according to the apparent 155�

diameter (Dapp) and the ‘un-adjusted’ size distribution Nm(Di) is computed as: 156�

.'�	/� � �01�02 3 �#4�54 ���������6778��78
9������:�;<=>�        157�

where Di is the center diameter of the ith size bin (from 1 to M) in mm; �D  is the bin 158�

width in mm; Aj  is the measurement area in mm2; vj  is the fall speed in m s-1 and �t is 159�

the time window in seconds. The fall speed measurement is fundamental to the 2DVD 160�

and relies on the ability to match the particle that falls in the upper light plane (and is 161�

imaged by Camera A) to the same particle that falls through the lower light plane and is 162�

imaged by Camera B (see Fig. 2). The match criteria used here are adapted from 163�

Hanesch (1999) as elaborated by Huang et al. (2010). If the match criteria are not 164�

satisfied then that particle is rejected; it follows that the concentration will tend to be 165�

under-estimated. To re-adjust the measured Nm(Di) for this underestimate (assumed to 166�

be a constant factor �) the following procedure is used.  167�

 168�

Assume that snow falls uniformly over the instrument. Then, the theoretical number of 169�

snowflakes falling through the virtual measuring area divided by the theoretical number 170�

of snowflakes falling in the scan area of each camera (shown in Fig. 2) should be equal 171�

to the ratio of these two areas as: 172�

1?@AB@1/C�D�E�AF�GHAIFD�J@G�/H�5/B1K�D�'@�GKB/HL��B@�1?@AB@1/C�D�E�AF�GHAIFD�J@G�/H�GC�H��B@��AF�G/HLD@�C�'@B� � �MM�NM � O�)������P�   173�

Therefore, an adjustment factor � is derived as:  174�



Q � M�"��E�AF�GHAIFD�J@G��C1K�DDR�CAKH1@S�/H�GC�H��B@��AF�G/HLD@�C�'@B��E�AF�'�C?@S�GHAIFD�J@G�/H�5/B1K�D�'@�GKB/HL��B@�� ������T�   175�

The “re-adjusted” concentration in each size channel (N(Di)) is defined as: 176�

.�	/� � Q � .'�	/�������U�   177�

where � is assumed constant (� � 1). In essence, the “raw” or unadjusted SSD is simply 178�

scaled by the factor �. The validity of this adjustment will be evaluated by comparison 179�

with SSD from the snow video imager (Newman et al. 2009) as well as determining the 180�

� independently by comparison with the SVI as described later in Section 3.1. 181�

2.3 Böhm’s Method  182�

Böhm (1989) developed a general methodology for the terminal fall speed of solid 183�

hydrometeors based on the mass, the mean effective projected area (Ae; see  Fig. 3, 184�

also referred to as shadow area) presented to the flow, and the smallest circumscribed 185�

area (A; circle or ellipse depending on the shape of the snow particle).  Since the 2DVD 186�

can measure the fall speed of each snowflake as well as two orthogonal images (Fig. 187�

1), we are able to compute the mass of each snowflake by inverting the Böhm 188�

equations. The assumption is that Ae which is the projected area in a plane normal to 189�

the flow, is approximately equal to the area from the side or front views (measured by 190�

the 2DVD) for irregular shaped particles. This assumption has been evaluated as being 191�

‘reasonable’ by Szyrmer and Zawadzki (2010) who use the HVSD which gives the side 192�

view only. We first compute the Reynolds number (Re) from fall speed (Vf) and viscosity 193�

(�) as: 194�



VW � �� � X� � �FY Z[\]
�� �����������O � 195�

where the characteristic dimension is the ‘area’ diameter (A being the area of the 196�

smallest circumscribed ellipse or circle that completely encloses the particle image). 197�

The � and air density (�a) are computed from temperature, air pressure and humidity.  198�

Next, we compute the Davies number (X) from Re as: 199�
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Finally the mass of the snowflake is computed as: 201�

7 ��\ � Y� � ^T � l � X� Z[@[ ]�m" ��������On� 202�

where g is the acceleration due to gravity.  The ratio (Ae/A) is referred to as the ‘area 203�

ratio’ or Ar which is � 1. The MKS units are appropriate for the variables in (10). The 204�

relative error in the estimate of mass due to uncertainty in the fixed relation between X 205�

and Re, and in the estimation of Ar has been evaluated by Szyrmer and Zawadzki 206�

(2010) as between 40-50%. The propagation of error from (10a) to (10c) is complicated 207�

and the reader is referred to the aforementioned reference for details.   208�

 209�

The calculation of the minimum circumscribed area (A) is based on the rectangle which 210�

completely encloses the particle (the rectangle width is Wr and height is H; see Fig. 1). 211�



We first assume that, (i) A is the maximum ellipse that can be fitted inside the rectangle 212�

and compute the area ratio Ae/A which should be � 1.  If this ratio is greater than 1, we 213�

assume that, (ii) A is the minimum circle that can contain the rectangle.  The minimum 214�

circumscribed area estimated from (i) usually tends to underestimate A whereas from 215�

(ii) tends to overestimate A.  The apparent volume (VLapp) and apparent diameter (Dapp) 216�

were defined earlier, thus the density (�) is obtained as the ratio of mass (m) to VLapp for 217�

each particle.  Since our measurements are restricted to frozen ice precipitation, the 218�

density is also restricted to min[m/VLapp  0.917] in cgs units. The mean density is 219�

calculated for each size bin and a power law fit of the form �=�Dapp� is obtained for the 220�

precipitation event. Here Dapp is in mm and � is in g cm-3. The mass-Dapp power law then 221�

is m=�(�/6)Dapp�+3 . 222�

 223�

For an area sampling measurement device such as the 2DVD, the liquid equivalent 224�

snow rate (SRm) can be computed directly as: 225�

oV' � �:OOpq rr��=[= s���������� 677�tu8�9���� � ����!v
=>�

;
/>�

 226�

where N is the number of size bins, M is the number of snowflakes in the ith size bin in 227�

�t (typically 60 seconds), VLj is the liquid equivalent volume of jth snowflake in mm3 (this 228�

is the product �VLapp where � as a function of Dapp is given by the power law fit) and Aj 229�

is the measurement area for the jth snowflake in unit of mm2.  The adjusted snow rate is 230�

SR = ��*SRm where the �� factor was defined in Section 2.2.  231�



We use the T-matrix (Waterman 1971; Barber and Yeh 1975) method to compute the 232�

radar cross-section of each particle and the equivalent reflectivity assuming: 233�

� Refractive index: computed by the Maxwell-Garnet (1904) mixing formula 234�

with temperature from environmental data. The particle is assumed to be a 235�

mixture of ice inclusions within an air matrix with effective density � as a 236�

function of Dapp as given by the 2DVD-derived power law fit 237�

� Orientation: the zenith angle is Gaussian with zero mean and 45° standard 238�

deviation; the azimuthal angle is uniformly distributed in [0 �] 239�

� Particle Size Distribution:  as in Section 2.2 which defines N(D)=�*Nm(D) 240�

� Particle shape: oblate spheroid with volume = VLapp and axis ratio = 0.8 241�

 242�

3. Experimental Data from LPVEx 243�

The Light Precipitation Validation Experiment (LPVEx) was held in the Fall of 2010 in 244�

the area surrounding Helsinki, Finland as a collaborative project between the Finnish 245�

Meteorological Institute (FMI), University of Helsinki and the NASA Ground Validation 246�

program (Petersen et al. 2011). While the experiment had multiple objectives and 247�

extensive suite of instruments, the focus herein is on snow measurements made at the 248�

Järvenpää site with the 2D-video disdrometer; this site also had the Precipitation 249�

Occurrence Sensor System (POSS; Sheppard and Joe 2008), the Snow Video Imager 250�

(SVI; Newman et al. 2009) and an OTT-PLUVIO2 gauge with Tretyakov and Alter 251�

shields (lanza et al. 2006; Rasmussen et al. 2012). Three C-band polarimetric radars 252�

located at Kumpula, Vantaa and Kerava (Koskinen et al., 2011) provided for excellent 253�



coverage over the Järvenpää site as well as over the network of six FMI snow gauges. 254�

Fig. 4 shows the location of the 3 radars, the Järvenpää site and the gauge network. 255�

Briefly, the three radars are nearly identical with 1° beams and using simultaneous H-V 256�

polarization on transmit and simultaneous reception of the H and V polarized back-257�

scattered signal components via two receivers. The minimum detectable Ze is about -10 258�

dBZ at range of 50 km. The reflectivity data from each radar covering matched areas of 259�

precipitation were used to construct the CDF of Ze enabling accurate cross-calibration of 260�

the radars (Hirsikko et al, 2013). All the radars are Vaisala dual-polarization weather 261�

radars, a detailed description of Vantaa radar operations is presented by Saltikoff and 262�

Nevvonen, (2011).  263�

 264�

Table 1 lists the four snow days where there was significant precipitation in Helsinki and 265�

surrounding areas. The snow events on these days were also favorable for 2DVD and 266�

other snow measuring instruments as the wind speeds were < 4 m s-1 at the Järvenpää 267�

site.  As seen in Table 1, the 30 Dec 2010 case could be sub-divided into two snow 268�

events based on the synoptic conditions. Similarly, the first event on 12 Jan 2011 (0800-269�

1230 UTC) could be separated from the second event that covered the period 2230-270�

2359 UTC which further continued the next day (13 Jan) until 0500. The liquid 271�

equivalent snow accumulations (SA) from the OTT-PLUVIO gauge ranged from 1.5 to 272�

4.2 mm.  273�

3.1 Example of 2DVD  processed data  from 30 Dec 2010 274�



As mentioned earlier, one of the fundamental measurements provided by the 2DVD is 275�

the fall speed, an example of which is provided in Fig. 5 from the first event on 30 Dec 276�

2010. The instrumental error in measuring terminal fall speeds is < 4% (for fall speeds 277�

<10 m s-1; Schönhuber et al. 2008). Such high accuracy is due in part to the plane 278�

distance calibration which is performed frequently and accounts for slight deviations in 279�

the plane distance depending on the location within the virtual measurement area (see 280�

Fig. 2); further the line scan frequency is quite high close to 55 kHz. Zawadzki et al. 281�

(2010) evaluated the fall speed measurement error for the HVSD which, to the best of 282�

our knowledge, does not account for plane distance deviations within the measurement 283�

area plus the line scan frequency is much lower, closer to 10 kHz. They estimated that 284�

the instrumental uncertainty for the HVSD is around 12% for fall speeds below 2 m s-1.  285�

While a similar analysis has not been done for the 2DVD, the contribution of 286�

instrumental error to the fall speed is expected to be much smaller than the natural 287�

variability which is depicted by the ±1� bars in Fig. 5. It is also evident that the 288�

commonly used power law fit for Vf versus D, while analytically convenient, does not fit 289�

the data as well as an exponential fit of the form Vf = c[1 – d*exp(- 	Dapp)].  290�

 291�

The snow size distribution (SSD) for the same event is shown in Fig. 6a where the 292�

distribution from 2DVD is compared with that derived from the Snow Video Imager 293�

(SVI). The ��-factor was estimated as 2.21 (Section 2b and eq. 8). Fig. 6b shows similar 294�

plot for 6 Jan. 2011 event.  The agreement in the SSD is quite good given that the two 295�

instruments are based on distinctly different measurement principles and sample 296�

volumes.  297�



As a further check on the estimation of � using (8), the unadjusted SSD from the 2DVD 298�

has been forced to match the SVI in each size bin and the resulting mean �SVI is 299�

computed as:  300�

Qw�x � �.r.w�x�	/�.'�	/� ���������;
/>�

 301�

where N is the number of size bins, NSVI(Di) is the SVI-measured concentration for the 302�

ith bin, and the corresponding 2DVD-measured Nm(Di) is obtained as in (6). For the case 303�

shown in Fig. 3.3 the �SVI was found to be 2.46 which is in close agreement with ��= 304�

2.21. For the other snow events listed in Table 1 the � comparisons are given in Table 4. 305�

As noted in the introduction the SVI gives a measure of the equal-area circular diameter 306�

which is not the same as Dapp from the 2DVD. We ignore the different estimates of D 307�

from the two instruments is so far as validation of the single camera-2DVD based ��-308�

factor estimation is concerned. A more elaborate discussion of SVI estimation of 309�

different measures of D and related characterization of uncertainties in estimation of Ze 310�

and SR are given in Wood et al. (2013).  311�

 312�

The area ratio (Ar) discussed in Section 2c plays an important role in inverting Böhm’s 313�

methodology to derive mass from the fall speed. Schmitt and Heymsfield (2010) 314�

comment that, “…area-dimensional and mass-dimensional relationships are rarely 315�

developed from the same dataset”. Fig. 7 shows the frequency of occurrence plot (in log 316�

scale) of Ar vs. Dapp for the same 30 Dec 2010 snow event. Also shown are the bin 317�

averaged mean and ±1� standard deviation bars along with the power law fit 318�



Ar�=�0.71�Dapp
0.08. The variability in Ar is quite large but in general agreement with 319�

Zwadzki et al. (2010) who used data from the HVSD but allowed Ar > 1. The mean fit in 320�

Fig. 7 is in good agreement with that given in Zawadzki et al; they obtain Ar=0.75D-0.17 321�

(but their ‘D’ is the maximum dimension from the side-view image). A somewhat 322�

different power law fit was obtained by Schmitt and Heymsfield (2010), who used cloud 323�

imaging probe on aircraft penetrations of ice clouds aloft (this is not surprising since our 324�

results are at the surface in heavier snowfall). Schmitt and Heymsfield obtained an 325�

exponent of �0.25 for the ARM data set (Heymsfield et al. 2004), but their coefficient 326�

was lower by a factor of 2.  327�

The final result from Böhm’s methodology is the ability to derive a mean density-Dapp 328�

power law and Fig. 8 shows the same for the 30 Dec 2010 event. While there is large 329�

variability in density for a given Dapp (especially evident for small particles Dapp< 1 mm 330�

which might be related to difficulty in matching such particles from the two camera 331�

images resulting in erroneous fall speed determination); nevertheless, there is an 332�

inverse relation between density and Dapp and the power law fit is �=0.15 Dapp-0.86 for 333�

this event (Table 1 gives the coefficient and exponent for the other events).  Plots of � 334�

versus Dapp from Table 1 using the coefficient (�) and exponent (�) found herein for the 335�

four snow days are close to the mean climatological relation found by Brandes et al. 336�

(2007; �=0.178, �=-0.922) as well as  Holroyd (1971; �=0.17, �=-1) and Fabry and 337�

Szyrmer (1999; �=0.15, �=-1)  with the caveat that ‘D’ in each of the quoted references 338�

are not calculated in the same manner (see, also, Table 2 from Brandes et al. 2007).  339�

The exponent of the mass-Dapp power law is given by 3+�; from Table 1, the latter 340�

exponent varies between 2.04 to 2.21 generally within the range obtained by Schmitt 341�



and Heymsfield (2010) based on fractal simulations of large aggregates (range between 342�

2.1�2.2), and close to the experimentally obtained exponent of 2.2 for the ARM dataset 343�

(Heymsfield et al. 2004).  344�

 345�

The liquid equivalent snow rate (SR) for the 30 Dec 2010 is calculated as given in (11) 346�

using the mean �-Dapp power law fit from Table 1 for the two snow events that occurred 347�

on that day. The SR is adjusted by the � factor. Fig. 9 shows the liquid equivalent snow 348�

accumulation from the 2DVD compared with the collocated OTT-PLUVIO2 gauge at the 349�

Järvenpää site. The maximum SR during the two snow periods occur at around 1230 350�

and 2200 UTC. The agreement between 2DVD and gauge is very good for this event 351�

(accumulations are based on 1-min SR from 2DVD). From Table 1, the accumulations 352�

between the 2DVD and gauge for the other days are also in good agreement.  It is 353�

difficult to estimate the accuracy of the 2DVD-derived snow rate but assuming the �-354�

Dapp is ‘exact’ and valid for the entire event, the dominant systematic error would be in 355�

the �-adjustment parameter of the SSD. Otherwise, systematic error would primarily 356�

arise due to incorrect estimate of � and secondarily �.  357�

3.2 Reflectivity and Ze-SR power law 358�

The reflectivity (Ze) at C-band (frequency 5.5 GHz) is computed from 2DVD-measured 359�

1-min averaged N(Dapp) and the mean �-Dapp power law fit (for the entire event),  based 360�

on the assumptions listed towards the end of Section 2.3. It is well established that for 361�

Rayleigh scattering and using the Maxwell-Garnet mixing formula (ice inclusions inside 362�

an air matrix) that Ze can be expressed as: 363�
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 364�

where |Kice,w|2 are the dielectric factors of solid ice and water. Since the mass of the 365�

particle is m=�VLapp, it follows that Ze can be simply computed (suppressing constants) 366�

as the sum(m2) over all the particles. Thus, the reflectivity is very sensitive to the m-Dapp 367�

relation (or, equivalently the �-Dapp) as shown by a number of previous studies (e.g., 368�

Ryzhkov et al. 1998; Matrosov 2009). Errors can arise from uncertainty in the ��factor 369�

which scales the N(D) or uncertainty in the coefficient � and less so in the exponent �. 370�

Note that the T-matrix scattering code is used to compute Ze at C-band frequency. 371�

Fig. 10 shows time series comparison of Ze from 2DVD, POSS [at Järvenpää site for (a) 372�

30 Dec 2010 event and (b) 6 Jan. 2011] and the scanning Kumpula C-band radar 373�

reflectivity data extracted over the same site (areal average over 1°X 1 km). The 2DVD 374�

and POSS reflectivities are 1-min averaged whereas the Kumpula radar data were 375�

available every 5 min. The 2DVD data are somewhat more ‘noisy’ as compared to 376�

POSS due mainly to sampling error (the POSS has a very large sample volume by 377�

several orders of magnitude relative to the 2DVD). The sampling error in the 2DVD 378�

measure of Ze was evaluated by Huang et al. (2011) by using two 2DVD units located 379�

side-by-side at a site in Huntsville, AL. They estimated the sampling error for reflectivity 380�

(in dBZ units) as 1.36 dB (time window for SSD integration was 1-min). They also 381�

estimated the normalized sampling error for SR as 8.5%. The temporal correlation 382�

between the three measures of Ze is visually quite good.  383�

 384�



By re-sampling the 2DVD and POSS reflectivities to the Kumpula radar samples, the 385�

scatter plot of 30 December 2010 case shown in Fig. 11 is obtained. The bias between 386�

POSS and 2DVD Ze is 0.11 dB, the standard deviation is 2.9 dB, and the correlation 387�

coefficient is 0.92. The corresponding values between Kumpula radar and 2DVD are, 388�

respectively, 0.18 dB (slight radar overestimate), 4.68 dB and 0.8. The latter standard 389�

deviation values would be even lower if the 2DVD sampling error of 1.3 dB were 390�

accounted for.  391�

The 2DVD processing described thus far gives the time series of Ze and SR every 392�

minute (i.e., 1-min time integration) for each of the long duration (> 4 h) events listed in 393�

Table 1.  In order to realize a ‘stable’ Ze-SR relation the sequential intensity filtering 394�

technique (SIFT) described by Lee and Zawadzki (2005) is used along with weighted 395�

total least-squares to estimate the coefficient and exponent of the Ze-SR power law. The 396�

basic time window (W) selected is 1 h; the SSDs are ordered by increasing Ze in this 397�

window; and a moving average of M=5 consecutively ordered SSDs is done to filter the 398�

DSDs. The same procedure is performed for the next hour of the event and so on until 399�

the entire snow duration is covered. From the filtered DSDs, the Ze is re-computed using 400�

the appropriate �-Dapp power law. To re-compute SR, eq. (11) can no longer be used, 401�

rather it is computed as: 402�

oV � �\:|X�	����	���
 �F.�	����}	������������ 403�

where � = �Dapp� is the mean fit, and Vf = c – d*exp(- 	Dapp) is the mean fit to the 404�

measured fall speeds (see example in Fig. 5).  405�



Fig. 12 shows the scatter plot of Ze versus SR and the power law fit for (a) the entire 30 406�

Dec 2010 case (i.e., inclusive of both events listed in Table 3) and (b) 6 Jan. 2011 case. 407�

Table 3 shows the Ze-SR power law fits for the other three snow days. For reference the 408�

FMI climatological relation is Ze=100 SR2 (Saltikoff et al., 2010) It is fairly evident that for 409�

a given Ze, the SR from the FMI relation will exceed that predicted from Table 3 power 410�

law fits. For completeness Table 4 shows the �-adjustment values, and the parameters 411�

[c d 	] of the Vf-Dapp fit.  412�

3.3 Radar-derived snow accumulations 413�

There were three C-band polarimetric radars operating during LPVEx, being located at 414�

(see Fig. 4) Kumpula (KUM), Kerava (KER) and Vantaa (VAN). The technical 415�

specifications can be found in (Hirsikko et al, 2013; Saltikoff and Nevvonen, 2011). 416�

When radar reflectivity is used along with a Ze-SR relation to generate, e.g., daily (liquid 417�

equivalent) snow accumulation maps, clutter and beam-blockage at low elevation 418�

angles can cause loss of signal (in the case of clutter, due to clutter filtering) which 419�

manifests as artifacts in the snow accumulation maps. To avoid this problem, Ze data 420�

from the three radars have been composited, using maximum reflectivity factor from any 421�

of the three radars, to generate the snow accumulation map for 30 Dec 2010 as shown 422�

in Fig. 13.  The peak accumulation is around 12 mm within the city of Helsinki. The solid 423�

black dots are the locations of six FMI snow gauges (Vaisalla VRG101 with Tretyakov 424�

wind shield; Lanza et al. 2006) and the OTT-PLUVIO at Järvenpää site. The numbers 425�

adjacent to the gauge locations are the measured accumulations in mm. The radar 426�

composite, of course, depicts quite clearly the spatial variability without any artifacts due 427�

to clutter or beam blockages; moreover the radar-based accumulations are in good 428�



agreement with the gauges.   Fig. 14 shows the accumulation map using the 429�

climatological FMI Ze-SR relation and it is readily apparent that, while the spatial 430�

variability is generally preserved, the magnitudes of the accumulations are 431�

overestimated relative to the gauges. In particular, the peak accumulations are now 432�

around 16 mm within the city.  433�

 434�

To further detail the radar and gauge comparisons, hourly accumulations are compared 435�

in Fig. 15 from one gauge location (solid dot in Fig. 13 with 7.8 mm; this is the Porvoo 436�

Harabacka location). Whilst it is clear that the FMI climatological relation overestimates 437�

the hourly accumulations soon after the snow begins, the radar-based hourly 438�

accumulation agrees well with the gauge (and not just the event totals). 439�

 440�

Fig. 16 (panel a) shows the scatter plot of daily gauge accumulations versus radar-441�

based accumulations (extracted from the radar composites over the six gauge locations 442�

and the gauge at the Järvenpää site) for the 4 days using the Ze-SR power laws from 443�

Table 3 while  panel b shows the same except for using the fixed FMI climatological Ze-444�

SR relation. The significant feature is the dramatic reduction in bias resulting from using 445�

the Ze-SR obtained from 2DVD data as listed in Table 3 as compared with the fixed FMI 446�

relation. The normalized bias and normalized standard error values are, respectively, 447�

28% and 30.8% when Table 3 is used versus 96.6% and 66.1% for the fixed FMI 448�

relation.  Note that positive bias implies radar overestimates the gauge values. The 449�

slope of a straight line trend passing through the origin is 1.2 for panel a versus 1.85 for 450�



panel b. It is reasonable to infer that the FMI gauges could have underestimated the 451�

snow amounts due to wind and type of shielding (i.e., collection efficiency < 1). Recall 452�

that the FMI gauges are Vaisala VRG101 with Tretyakov wind shields whose collection 453�

efficiency is not known as a function of wind speed. The collection efficiency (or, 454�

undercatch) is a complicated function of not only gauge/shield type and wind speed, but 455�

also the type of snow particle (dry vs. wet or unrimed vs. rimed) and particle size 456�

distribution (Thériault et al. 2012). Thus, there is considerable scatter of the collection 457�

efficiency for a given wind speed along with a systematic decrease with increasing wind 458�

speed. The latter can be estimated from Rasmussen et al. (2012; their Fig. 11) as mean 459�

collection efficiency dropping to 0.75 at wind speed of 4 ms-1. If this is taken into 460�

account the bias between radar and FMI gauges seen in Fig. 16a would be further 461�

reduced.   462�

3.4 Spatial reflectivity structure for 30 Dec 2010 and 06 January 2011 cases 463�

So far, the reflectivity structure nor the environmental/synoptic conditions have been 464�

described for the different snow days, as the main emphasis was on the 2DVD data, its 465�

processing and product evaluation. However, it is useful to consider the reflectivity 466�

structure for the 30 Dec 2010 case (which had the most daily accumulation) and the 06 467�

Jan 2011 case which had the least (Table 2 or Fig. 16), accompanied by very different 468�

coefficients/exponents of the Ze-SR power laws (respectively, 210/1.63 versus 469�

130/1.44).  470�

 471�



On 30 Dec 2010 large scale snowfall areas from ESE (the first snowfall from 0800-1300 472�

UTC; see Fig. 10a) and from WNW (second snowfall from 1500-2400 UTC) merged 473�

above southern Finland. These snowfall areas were associated with two low pressure 474�

systems, one centered in Eastern Europe and the main one forming NW of 475�

Scandinavia. At around 1900 UTC the two precipitation systems have merged. 476�

ADMIRARI (Battaglia et al., 2010) LWP (liquid water path) observations reached a 477�

maximum of 400 g m-2 at 1500 UTC. During the observations ADMIRARI was located in 478�

the backyard of Vaisala which is around 10 km north from Kumpula radar, as shown in 479�

Fig. 4. This is the time when the warm moist area from NW had arrived to the Helsinki 480�

region. During the snowfall the LWP values were ranging between 100-150 g m-2. It 481�

should be noted that these are the slant LWP observations with elevation angle of 30o. 482�

At the time of peak snowfall for the first event (1100-1200 UTC; see Fig. 10a) SVI 483�

images were viewed and it was observed that the main precipitation types were pristine 484�

dendritic type crystals with large aggregates composed of dendrites (~ 8 mm) with little 485�

evidence of riming (Newman, personal communication). Fig. 17 shows sample SVI 486�

images at 1120 UTC near the time of maximum Ze (see Fig. 10a).  487�

 488�

On 06 Jan 2011 south westerly upper level flow from Scandinavia brought warm and 489�

moist air that resulted in a light to moderate snowfall lasting from 0100 to 0800 UTC. 490�

During this period (0500-0700 UTC) the ADMIRARI showed a large amount of 491�

supercooled water with LWP values exceeding 500 g m-2. Examination of SVI images 492�

between 0600-0630 showed definite indications of rimed dendrites and columnar 493�

crystals followed by rimed to heavily rimed particles (perhaps graupel). Further in time, 494�



large aggregates (~5-7 mm) appear to be rimed. Also, many smaller rimed 495�

snowflakes/crystals (Newman, personal communication). Fig. 18 shows examples of 496�

SVI images of rimed aggregates at 0620 UTC. 497�

 498�

Fig. 19 shows the rather dramatically different reflectivity structures (at low elevation 499�

angle 0.5°) between the 30 Dec 2010 event (at 1000 UTC) and the 06 January 2011 500�

event (at 0610 UTC). The spatial variability is much more pronounced in the 06 January 501�

case (more cellular) as compared to the more conventional spatial variability occurring 502�

on 30 Dec. The cellular feature implies weak imbedded convection is likely with more 503�

prevalent particle riming as alluded to earlier.  This is supported by analysis by Lim et al. 504�

(2013) who were able to associate higher spatial variability with enhanced riming of 505�

particles. The vertical structures are also different as depicted in the RHI scans in Fig. 506�

20 taken along the radial to the Järvenpää site  Again, the 30 Dec event is much more 507�

uniform in the vertical as compared with the 06 Jan event, the latter showing more 508�

evidence of cellular structure in the vertical implying imbedded convection and 509�

enhanced riming. 510�

  511�

Finally, in Fig. 21, the snow accumulation map for 06 Jan event is shown using the 512�

2DVD-derived Ze-SR power law, which can be compared with Fig. 13.  The snow 513�

accumulations for this event (see, also Table 1) are much smaller compared with 30 514�

Dec case additionally showing much more spatial variability. Note these are not daily 515�



totals but restricted to the period 0000-0900 UTC since the 2DVD stopped working at 516�

0824 UTC on this day thereby missing another major snowfall event later on this day.  517�

4. Summary and Conclusions 518�

The estimation of the mean density-size and Ze-SR power laws using 2D-video 519�

disdrometer measured fall speed, apparent diameter and snow size distribution (SSD) 520�

along with Böhm’s (1989) methodology is described in some detail. A method for 521�

adjusting the concentration based on single camera data to account for loss of particles 522�

that do not satisfy the matching criteria (when 2 cameras are used) is shown to be 523�

reasonable when compared with Snow Video Imager (SVI)-based concentrations.  524�

Snow events which occurred on four days of the Light Precipitation Validation 525�

Experiment (LPVEx) were chosen based on light wind speeds (< 4 ms-1) at the 526�

measurement site with liquid equivalent snow accumulations ranging from 1.5 mm to 4 527�

mm. While there is large variability of fall speed, area ratio and derived density which is 528�

attributed to natural variability of snow type, shape and porosity, the mean density-Dapp 529�

(or, mass-Dapp) and Ze-SR power laws do vary from event-to-event. The reflectivity 530�

derived from the 2DVD data is shown to be in good agreement with collocated POSS 531�

and with scanning C-band radar, while the liquid equivalent snow accumulation is 532�

shown to be in good agreement with collocated OTT-PLUVIO gauge at the 533�

measurement site. The radar-based snow accumulations using the 2DVD-derived Ze-534�

SR relations for the four days are in good agreement with a network of six FMI snow 535�

gauges (and the OTT-PLUVIO gauge) and outperform the accumulations derived from a 536�

climatological Ze-SR relation used by the Finnish Meteorological Institute (FMI). The 537�

normalized bias between radar-derived and gauge accumulation is reduced from 96% 538�



(overestimate by the FMI climatological relation) to 28% when using the Ze-SR based 539�

on 2DVD data. The normalized standard error is also reduced significantly from 66% to 540�

31%. While the FMI gauges were equipped with Tretyakov wind shields, 541�

undercatchment due to wind cannot be ignored and could account for underestimation 542�

of snow accumulations by 20-30% for wind speeds in the range 3-4 ms-1; this would 543�

reduce the bias between radar and gauge accumulations even further.   544�

 545�

For two of the days with widely different coefficients of the Ze-SR power law, the 546�

reflectivity structure showed significant differences in spatial variability (both horizontal 547�

and vertical). Liquid water path estimates from radiometric data also showed significant 548�

differences between the two cases. Examination of SVI particle images at the 549�

measurement site corroborated these differences in terms of unrimed versus rimed 550�

snow particles. 551�

 552�

In summary, the findings reported herein support the application of Böhm’s (1989) 553�

methodology for deriving the mean density-size and Ze-SR power laws using data from 554�

2D-video disdrometer. Evaluation of radar-based snow accumulation against a network 555�

of snow gauges independently supports the latter conclusion notwithstanding the limited 556�

number of events available for analysis.   557�
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Table 1: The four snow days from LPVEx 852�

Event Time (UTC) Temperature 
C 

2DVD 
accum 
(mm) 

OTT-PLUVIO2 accum 
(mm) 

30 Dec 2010 a.0800-1300 
b.1500-2359 

a. -9 
b. -8 3.84 4.24 

06 Jan 2011 0230-0830 -7 1.53 1.53 

12 Jan 2011 a.0800-1230 
b.2230-2359 

a. -3 
b. -3 3.36 2.05 

13 Jan 2011 0000-0500 -4 2.77 2.73 

853�



Table 2: Coefficient � and exponent (�) of �-Dapp power law fit (density in g cm-3 and 

Dapp in mm) 

Event Time (UTC) � � 

30 Dec 2010 
a.0800-1300 

b.1500-2359 

a.  0.15 

b.  0.15 

-0.86 

-0.96 

06 Jan 2011 0230-0830† 0.17 -0.79 

12 Jan 2011 
a.0800-1230 

b.2230-2359 

a. 0.23 

b. 0.19 

-0.88 

-0.8 

13 Jan 2011 0000-0500 0.19 -0.8 

† the 2DVD stopped working at 0824 on this day 

  854�



Table 3: The Ze = a*SRb power law for the four days.  Note Ze in mm6 m-3 and SR in mm 

h-1. 

 

 

 

 

 

 

 

† The power laws are derived for application to all events occurring during the                      855�
day.  856�
  857�

 a b 

30 Dec. 2010 210.72 1.63 

06 Jan. 2011 130.72 1.44 

12 Jan. 2011 209.20 1.67 

13 Jan. 2011 134.86 1.81 



 858�

Table 4: The �-adjustment factor and the Vf -Dapp fit parameters [c d �]. 

Event Time (UTC) �� �SVI c d 	 

30 Dec 2010 a.0800-1300 
b.1500-2359 

a. 2.21 
b. 1.94 

a. 2.46 
b. 2.57 1.20 1.54 1.16 

06 Jan 2011 0230-0830 2.55 2.92 1.37 1.37 1.25 

12 Jan 2011 a.0800-1230 
b.2230-2359 

a. 3.53 
b. 2.23 

a. 3.6 
b. 2.18 1.37 1.85 1.78 

13 Jan 2011 0000-0500 2.23 4.24 1.34 1.34 0.95 

† The Vf- Dapp fits are derived for application to all events occurring during the day 
(note: Dapp in mm and Vf in m s-1 ). 


