1,306 research outputs found
The ages and metallicities of galaxies in the local universe
We derive stellar metallicities, light-weighted ages and stellar masses for a
magnitude-limited sample of 175,128 galaxies drawn from the Sloan Digital Sky
Survey Data Release Two (SDSS DR2). We compute median-likelihood estimates of
these parameters using a large library of model spectra at medium-high
resolution, covering a comprehensive range of star formation histories. The
constraints we derive are set by the simultaneous fit of five spectral
absorption features, which are well reproduced by our population synthesis
models. By design, these constraints depend only weakly on the alpha/Fe element
abundance ratio. Our sample includes galaxies of all types spanning the full
range in star formation activity, from dormant early-type to actively
star-forming galaxies. We show that, in the mean, galaxies follow a sequence of
increasing stellar metallicity, age and stellar mass at increasing 4000AA-break
strength (D4000). For galaxies of intermediate mass, stronger Balmer absorption
at fixed D4000 is associated with higher metallicity and younger age. We
investigate how stellar metallicity and age depend on total galaxy stellar
mass. Low-mass galaxies are typically young and metal-poor, massive galaxies
old and metal-rich, with a rapid transition between these regimes over the
stellar mass range 3x10^9<M/Msun<3x10^10. Both high- and low-concentration
galaxies follow these relations, but there is a large dispersion in stellar
metallicity at fixed stellar mass, especially for low-concentration galaxies of
intermediate mass. Despite the large scatter, the relation between stellar
metallicity and stellar mass is similar to the correlation between gas-phase
oxygen abundance and stellar mass for star-forming galaxies. [abriged]Comment: 22 pages, 14 figures, accepted for publication on MNRAS, data
available at http://www.mpa-garching.mpg.de/SDSS
The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback
The properties of the host galaxies of a well-defined sample of 2215
radio-loud AGN with redshifts 0.03 < z < 0.3, defined from the SDSS, are
investigated. These are predominantly low radio luminosity sources, with 1.4GHz
luminosities of 10^23 to 10^25 W/Hz. The fraction of galaxies that host
radio-loud AGN with L(1.4GHz) > 10^23 W/Hz is a strong function of stellar
mass, rising from nearly zero below a stellar mass of 10^10 Msun to more than
30% at 5x10^11 Msun. The integral radio luminosity function is derived in six
ranges of stellar and black hole mass. Its shape is very similar in all of
these ranges and can be well fitted by a broken power-law. Its normalisation
varies strongly with mass, as M_*^2.5 or M_BH^1.6; this scaling only begins to
break down when the predicted radio-loud fraction exceeds 20-30%. There is no
correlation between radio and emission line luminosities for the radio-loud AGN
in the sample and the probability that a galaxy of given mass is radio-loud is
independent of whether it is optically classified as an AGN. The host galaxies
of the radio-loud AGN have properties similar to those of ordinary galaxies of
the same mass.
All of these findings support the conclusion that the optical AGN and low
radio luminosity AGN phenomena are independent and are triggered by different
physical mechanisms. Intriguingly, the dependence on black hole mass of the
radio-loud AGN fraction mirrors that of the rate at which gas cools from the
hot atmospheres of elliptical galaxies. It is speculated that gas cooling
provides a natural explanation for the origin of the radio-loud AGN activity,
and it is argued that AGN heating could plausibly balance the cooling of the
gas over time. [Abridged]Comment: Accepted for publication in MNRAS. LaTeX, 16 pages. Figure 10 is in
colou
The extended HeII4686-emitting region in IZw18 unveiled: clues for peculiar ionizing sources
New integral field spectroscopy has been obtained for IZw18, the nearby
lowest-metallicity galaxy considered our best local analog of systems forming
at high-z. Here we report the spatially resolved spectral map of the nebular
HeII4686 emission in IZw18, from which we derived for the first time its total
HeII-ionizing flux. Nebular HeII emission implies the existence of a hard
radiation field. HeII-emitters are observed to be more frequent among high-z
galaxies than for local objects. So investigating the HeII-ionizing source(s)
in IZw18 may reveal the ionization processes at high-z. HeII emission in
star-forming galaxies, has been suggested to be mainly associated with
Wolf-Rayet stars (WRs), but WRs cannot satisfactorily explain the
HeII-ionization at all times, in particular at lowest metallicities. Shocks
from supernova remnants, or X-ray binaries, have been proposed as additional
potential sources of HeII-ionizing photons. Our data indicate that conventional
HeII-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to
explain the observed nebular HeII4686 emission in IZw18. We find that the
HeII-ionizing radiation expected from models for either low-metallicity
super-massive O stars or rotating metal-free stars could account for the
HeII-ionization budget measured, while only the latter models could explain the
highest values of HeII4686/Hbeta observed. The presence of such peculiar stars
in IZw18 is suggestive and further investigation in this regard is needed. This
letter highlights that some of the clues of the early Universe can be found
here in our cosmic backyard.Comment: 6 pages, 3 figures. Accepted for publication in ApJ Letter
Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies
We analyze star forming galaxies drawn from SDSS DR7 to show how the
interstellar medium (ISM) Na I 5890, 5896 (Na D) absorption lines depend on
galaxy physical properties, and to look for evidence of galactic winds. We
combine the spectra of galaxies with similar geometry/physical parameters to
create composite spectra with signal-to-noise ~300. The stellar continuum is
modeled using stellar population synthesis models, and the continuum-normalized
spectrum is fit with two Na I absorption components. We find that: (1) ISM Na D
absorption lines with equivalent widths EW > 0.8A are only prevalent in disk
galaxies with specific properties -- large extinction (Av), high star formation
rates (SFR), high star formation rate per unit area (), or
high stellar mass (M*). (2) the ISM Na D absorption lines can be separated into
two components: a quiescent disk-like component at the galaxy systemic velocity
and an outflow component; (3) the disk-like component is much stronger in the
edge-on systems, and the outflow component covers a wide angle but is stronger
within 60deg of the disk rotation axis; (4) the EW and covering factor of the
disk component correlate strongly with dust attenuation, highlighting the
importance that dust shielding may play the survival of Na I. (5) The EW of the
outflow component depends primarily on and secondarily on
Av; (6) the outflow velocity varies from ~120 to 160km/s but shows little hint
of a correlation with galaxy physical properties over the modest dynamic range
that our sample probes (1.2 dex in log and 1 dex in log M*).Comment: 18 pages, 18 figures, accepted by A
Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the 5780.5 diffuse interstellar band in AM 1353-272 B
Diffuse Interstellar Bands (DIBs) are non-stellar weak absorption features of
unknown origin found in the spectra of stars viewed through one or several
clouds of Interstellar Medium (ISM). Research of DIBs outside the Milky Way is
currently very limited. Specifically spatially resolved investigations of DIBs
outside of the Local Group is, to our knowledge, inexistent. Here, we explore
the capability of the high sensitivity Integral Field Spectrograph, MUSE, as a
tool to map diffuse interstellar bands at distances larger than 100 Mpc. We use
MUSE commissioning data for AM 1353-272 B, the member with highest extinction
of the "The Dentist's Chair", an interacting system of two spiral galaxies.
High signal-to-noise spectra were created by co-adding the signal of many
spatial elements distributed in a geometry of concentric elliptical half-rings.
We derived decreasing radial profiles for the equivalent width of the
5780.5 DIB both in the receding and approaching side of the companion
galaxy up to distances of 4.6 kpc from the center of the galaxy.
Likewise, interstellar extinction, as derived from the Halpha/Hbeta line ratio
displays a similar trend, with decreasing values towards the external parts.
This translates into an intrinsic correlation between the strength of the DIB
and the extinction within AM 1353-272 B consistent with the current existing
global trend between these quantities when using measurements for both Galactic
and extragalactic sight lines. Mapping of DIB strength in the Local Universe as
up to now only done for the Milky Way seems feasible. This offers a new
approach to study the relationship between DIBs and other characteristics and
species of the ISM in different conditions as those found in our Galaxy to the
use of galaxies in the Local Group and/or single sightlines towards supernovae,
quasars and galaxies outside the Local Group.Comment: 4 pages, 4 figures, accepted for publication as a Letter in Astronomy
and Astrophysics; Received 10 February 2015 / Accepted 20 February 2015 ;
English corrections include
The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors
Low luminosity radio-loud active galactic nuclei (AGN) are generally found in
massive red elliptical galaxies, where they are thought to be powered through
gas accretion from their surrounding hot halos in a radiatively inefficient
manner. These AGN are often referred to as "low-excitation" radio galaxies
(LERGs). When radio-loud AGN are found in galaxies with a young stellar
population and active star formation, they are usually high-power
radiatively-efficient radio AGN ("high-excitation", HERG). Using a sample of
low-redshift radio galaxies identified within the Sloan Digital Sky Survey
(SDSS), we determine the fraction of galaxies that host a radio-loud AGN,
, as a function of host galaxy stellar mass, , star formation
rate, color (defined by the 4000 \angstrom break strength), radio luminosity
and excitation state (HERG/LERG).
We find the following: 1. LERGs are predominantly found in red galaxies. 2.
The radio-loud AGN fraction of LERGs hosted by galaxies of any color follows a
power law. 3. The fraction of red galaxies
hosting a LERG decreases strongly for increasing radio luminosity. For massive
blue galaxies this is not the case. 4. The fraction of green galaxies hosting a
LERG is lower than that of either red or blue galaxies, at all radio
luminosities. 5. The radio-loud AGN fraction of HERGs hosted by galaxies of any
color follows a power law. 6. HERGs have a
strong preference to be hosted by green or blue galaxies. 7. The fraction of
galaxies hosting a HERG shows only a weak dependence on radio luminosity cut.
8. For both HERGs and LERGs, the hosting probability of blue galaxies shows a
strong dependence on star formation rate. This is not observed in galaxies of a
different color.[abridged]Comment: 7 pages, 6 figure
The Lopsidedness of Present-Day Galaxies: Results from the Sloan Digital Sky Survey
Large-scale asymmetries in the stellar mass distribution in galaxies are
believed to trace non-equilibrium situations in the luminous and/or dark matter
component. These may arise in the aftermath of events like mergers, accretion,
and tidal interactions. These events are key in the evolution of galaxies. In
this paper we quantify the large-scale lopsidedness of light distributions in
25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4
using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution
of light is primarily due to a corresponding lopsidedness in the stellar mass
distribution. Observational effects, such as seeing, Poisson noise, and
inclination, introduce only small errors in lopsidedness for the majority of
this sample. We find that lopsidedness correlates strongly with other basic
galaxy structural parameters: galaxies with low concentration, stellar mass,
and stellar surface mass density tend to be lopsided, while galaxies with high
concentration, mass, and density are not. We find that the strongest and most
fundamental relationship between lopsidedness and the other structural
parameters is with the surface mass density. We also find, in agreement with
previous studies, that lopsidedness tends to increase with radius. Both these
results may be understood as a consequence of several factors. The outer
regions of galaxies and low-density galaxies are more susceptible to tidal
perturbations, and they also have longer dynamical times (so lopsidedness will
last longer). They are also more likely to be affected by any underlying
asymmetries in the dark matter halo.Comment: 42 pages, 13 figures, 3 tables, accepted to Ap
- âŠ