1,306 research outputs found

    The ages and metallicities of galaxies in the local universe

    Full text link
    We derive stellar metallicities, light-weighted ages and stellar masses for a magnitude-limited sample of 175,128 galaxies drawn from the Sloan Digital Sky Survey Data Release Two (SDSS DR2). We compute median-likelihood estimates of these parameters using a large library of model spectra at medium-high resolution, covering a comprehensive range of star formation histories. The constraints we derive are set by the simultaneous fit of five spectral absorption features, which are well reproduced by our population synthesis models. By design, these constraints depend only weakly on the alpha/Fe element abundance ratio. Our sample includes galaxies of all types spanning the full range in star formation activity, from dormant early-type to actively star-forming galaxies. We show that, in the mean, galaxies follow a sequence of increasing stellar metallicity, age and stellar mass at increasing 4000AA-break strength (D4000). For galaxies of intermediate mass, stronger Balmer absorption at fixed D4000 is associated with higher metallicity and younger age. We investigate how stellar metallicity and age depend on total galaxy stellar mass. Low-mass galaxies are typically young and metal-poor, massive galaxies old and metal-rich, with a rapid transition between these regimes over the stellar mass range 3x10^9<M/Msun<3x10^10. Both high- and low-concentration galaxies follow these relations, but there is a large dispersion in stellar metallicity at fixed stellar mass, especially for low-concentration galaxies of intermediate mass. Despite the large scatter, the relation between stellar metallicity and stellar mass is similar to the correlation between gas-phase oxygen abundance and stellar mass for star-forming galaxies. [abriged]Comment: 22 pages, 14 figures, accepted for publication on MNRAS, data available at http://www.mpa-garching.mpg.de/SDSS

    The host galaxies of radio-loud AGN: mass dependencies, gas cooling and AGN feedback

    Full text link
    The properties of the host galaxies of a well-defined sample of 2215 radio-loud AGN with redshifts 0.03 < z < 0.3, defined from the SDSS, are investigated. These are predominantly low radio luminosity sources, with 1.4GHz luminosities of 10^23 to 10^25 W/Hz. The fraction of galaxies that host radio-loud AGN with L(1.4GHz) > 10^23 W/Hz is a strong function of stellar mass, rising from nearly zero below a stellar mass of 10^10 Msun to more than 30% at 5x10^11 Msun. The integral radio luminosity function is derived in six ranges of stellar and black hole mass. Its shape is very similar in all of these ranges and can be well fitted by a broken power-law. Its normalisation varies strongly with mass, as M_*^2.5 or M_BH^1.6; this scaling only begins to break down when the predicted radio-loud fraction exceeds 20-30%. There is no correlation between radio and emission line luminosities for the radio-loud AGN in the sample and the probability that a galaxy of given mass is radio-loud is independent of whether it is optically classified as an AGN. The host galaxies of the radio-loud AGN have properties similar to those of ordinary galaxies of the same mass. All of these findings support the conclusion that the optical AGN and low radio luminosity AGN phenomena are independent and are triggered by different physical mechanisms. Intriguingly, the dependence on black hole mass of the radio-loud AGN fraction mirrors that of the rate at which gas cools from the hot atmospheres of elliptical galaxies. It is speculated that gas cooling provides a natural explanation for the origin of the radio-loud AGN activity, and it is argued that AGN heating could plausibly balance the cooling of the gas over time. [Abridged]Comment: Accepted for publication in MNRAS. LaTeX, 16 pages. Figure 10 is in colou

    The extended HeII4686-emitting region in IZw18 unveiled: clues for peculiar ionizing sources

    Get PDF
    New integral field spectroscopy has been obtained for IZw18, the nearby lowest-metallicity galaxy considered our best local analog of systems forming at high-z. Here we report the spatially resolved spectral map of the nebular HeII4686 emission in IZw18, from which we derived for the first time its total HeII-ionizing flux. Nebular HeII emission implies the existence of a hard radiation field. HeII-emitters are observed to be more frequent among high-z galaxies than for local objects. So investigating the HeII-ionizing source(s) in IZw18 may reveal the ionization processes at high-z. HeII emission in star-forming galaxies, has been suggested to be mainly associated with Wolf-Rayet stars (WRs), but WRs cannot satisfactorily explain the HeII-ionization at all times, in particular at lowest metallicities. Shocks from supernova remnants, or X-ray binaries, have been proposed as additional potential sources of HeII-ionizing photons. Our data indicate that conventional HeII-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to explain the observed nebular HeII4686 emission in IZw18. We find that the HeII-ionizing radiation expected from models for either low-metallicity super-massive O stars or rotating metal-free stars could account for the HeII-ionization budget measured, while only the latter models could explain the highest values of HeII4686/Hbeta observed. The presence of such peculiar stars in IZw18 is suggestive and further investigation in this regard is needed. This letter highlights that some of the clues of the early Universe can be found here in our cosmic backyard.Comment: 6 pages, 3 figures. Accepted for publication in ApJ Letter

    Absorption-line probes of the prevalence and properties of outflows in present-day star-forming galaxies

    Full text link
    We analyze star forming galaxies drawn from SDSS DR7 to show how the interstellar medium (ISM) Na I 5890, 5896 (Na D) absorption lines depend on galaxy physical properties, and to look for evidence of galactic winds. We combine the spectra of galaxies with similar geometry/physical parameters to create composite spectra with signal-to-noise ~300. The stellar continuum is modeled using stellar population synthesis models, and the continuum-normalized spectrum is fit with two Na I absorption components. We find that: (1) ISM Na D absorption lines with equivalent widths EW > 0.8A are only prevalent in disk galaxies with specific properties -- large extinction (Av), high star formation rates (SFR), high star formation rate per unit area (ÎŁSFR\Sigma_{\rm SFR}), or high stellar mass (M*). (2) the ISM Na D absorption lines can be separated into two components: a quiescent disk-like component at the galaxy systemic velocity and an outflow component; (3) the disk-like component is much stronger in the edge-on systems, and the outflow component covers a wide angle but is stronger within 60deg of the disk rotation axis; (4) the EW and covering factor of the disk component correlate strongly with dust attenuation, highlighting the importance that dust shielding may play the survival of Na I. (5) The EW of the outflow component depends primarily on ÎŁSFR\Sigma_{\rm SFR} and secondarily on Av; (6) the outflow velocity varies from ~120 to 160km/s but shows little hint of a correlation with galaxy physical properties over the modest dynamic range that our sample probes (1.2 dex in logÎŁSFR\Sigma_{\rm SFR} and 1 dex in log M*).Comment: 18 pages, 18 figures, accepted by A

    Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the λ\lambda5780.5 diffuse interstellar band in AM 1353-272 B

    Get PDF
    Diffuse Interstellar Bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of Interstellar Medium (ISM). Research of DIBs outside the Milky Way is currently very limited. Specifically spatially resolved investigations of DIBs outside of the Local Group is, to our knowledge, inexistent. Here, we explore the capability of the high sensitivity Integral Field Spectrograph, MUSE, as a tool to map diffuse interstellar bands at distances larger than 100 Mpc. We use MUSE commissioning data for AM 1353-272 B, the member with highest extinction of the "The Dentist's Chair", an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. We derived decreasing radial profiles for the equivalent width of the λ\lambda5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of ∌\sim4.6 kpc from the center of the galaxy. Likewise, interstellar extinction, as derived from the Halpha/Hbeta line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM 1353-272 B consistent with the current existing global trend between these quantities when using measurements for both Galactic and extragalactic sight lines. Mapping of DIB strength in the Local Universe as up to now only done for the Milky Way seems feasible. This offers a new approach to study the relationship between DIBs and other characteristics and species of the ISM in different conditions as those found in our Galaxy to the use of galaxies in the Local Group and/or single sightlines towards supernovae, quasars and galaxies outside the Local Group.Comment: 4 pages, 4 figures, accepted for publication as a Letter in Astronomy and Astrophysics; Received 10 February 2015 / Accepted 20 February 2015 ; English corrections include

    The triggering probability of radio-loud AGN: A comparison of high and low excitation radio galaxies in hosts of different colors

    Get PDF
    Low luminosity radio-loud active galactic nuclei (AGN) are generally found in massive red elliptical galaxies, where they are thought to be powered through gas accretion from their surrounding hot halos in a radiatively inefficient manner. These AGN are often referred to as "low-excitation" radio galaxies (LERGs). When radio-loud AGN are found in galaxies with a young stellar population and active star formation, they are usually high-power radiatively-efficient radio AGN ("high-excitation", HERG). Using a sample of low-redshift radio galaxies identified within the Sloan Digital Sky Survey (SDSS), we determine the fraction of galaxies that host a radio-loud AGN, fRLf_{RL}, as a function of host galaxy stellar mass, M∗M_*, star formation rate, color (defined by the 4000 \angstrom break strength), radio luminosity and excitation state (HERG/LERG). We find the following: 1. LERGs are predominantly found in red galaxies. 2. The radio-loud AGN fraction of LERGs hosted by galaxies of any color follows a fRLLE∝M∗2.5f^{LE}_{RL} \propto M^{2.5}_* power law. 3. The fraction of red galaxies hosting a LERG decreases strongly for increasing radio luminosity. For massive blue galaxies this is not the case. 4. The fraction of green galaxies hosting a LERG is lower than that of either red or blue galaxies, at all radio luminosities. 5. The radio-loud AGN fraction of HERGs hosted by galaxies of any color follows a fRLHE∝M∗1.5f^{HE}_{RL} \propto M^{1.5}_* power law. 6. HERGs have a strong preference to be hosted by green or blue galaxies. 7. The fraction of galaxies hosting a HERG shows only a weak dependence on radio luminosity cut. 8. For both HERGs and LERGs, the hosting probability of blue galaxies shows a strong dependence on star formation rate. This is not observed in galaxies of a different color.[abridged]Comment: 7 pages, 6 figure

    The Lopsidedness of Present-Day Galaxies: Results from the Sloan Digital Sky Survey

    Full text link
    Large-scale asymmetries in the stellar mass distribution in galaxies are believed to trace non-equilibrium situations in the luminous and/or dark matter component. These may arise in the aftermath of events like mergers, accretion, and tidal interactions. These events are key in the evolution of galaxies. In this paper we quantify the large-scale lopsidedness of light distributions in 25155 galaxies at z < 0.06 from the Sloan Digital Sky Survey Data Release 4 using the m = 1 azimuthal Fourier mode. We show that the lopsided distribution of light is primarily due to a corresponding lopsidedness in the stellar mass distribution. Observational effects, such as seeing, Poisson noise, and inclination, introduce only small errors in lopsidedness for the majority of this sample. We find that lopsidedness correlates strongly with other basic galaxy structural parameters: galaxies with low concentration, stellar mass, and stellar surface mass density tend to be lopsided, while galaxies with high concentration, mass, and density are not. We find that the strongest and most fundamental relationship between lopsidedness and the other structural parameters is with the surface mass density. We also find, in agreement with previous studies, that lopsidedness tends to increase with radius. Both these results may be understood as a consequence of several factors. The outer regions of galaxies and low-density galaxies are more susceptible to tidal perturbations, and they also have longer dynamical times (so lopsidedness will last longer). They are also more likely to be affected by any underlying asymmetries in the dark matter halo.Comment: 42 pages, 13 figures, 3 tables, accepted to Ap
    • 

    corecore