21 research outputs found

    Ontologies for increasing the FAIRness of plant research data

    Full text link
    The importance of improving the FAIRness (findability, accessibility, interoperability, reusability) of research data is undeniable, especially in the face of large, complex datasets currently being produced by omics technologies. Facilitating the integration of a dataset with other types of data increases the likelihood of reuse, and the potential of answering novel research questions. Ontologies are a useful tool for semantically tagging datasets as adding relevant metadata increases the understanding of how data was produced and increases its interoperability. Ontologies provide concepts for a particular domain as well as the relationships between concepts. By tagging data with ontology terms, data becomes both human and machine interpretable, allowing for increased reuse and interoperability. However, the task of identifying ontologies relevant to a particular research domain or technology is challenging, especially within the diverse realm of fundamental plant research. In this review, we outline the ontologies most relevant to the fundamental plant sciences and how they can be used to annotate data related to plant-specific experiments within metadata frameworks, such as Investigation-Study-Assay (ISA). We also outline repositories and platforms most useful for identifying applicable ontologies or finding ontology terms.Comment: 34 pages, 4 figures, 1 table, 1 supplementary tabl

    Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare

    Get PDF
    Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber APM. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare. Plant Physiology. 2016;170(1):102-122.Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism(CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C-3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C-3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM

    Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare

    No full text
    Crassulacean acid metabolism (CAM) has evolved as a water-saving strategy, and its engineering into crops offers an opportunity to improve their water use efficiency. This requires a comprehensive understanding of the regulation of the CAM pathway. Here, we use the facultative CAM species Talinum triangulare as a model in which CAM can be induced rapidly by exogenous abscisic acid. RNA sequencing and metabolite measurements were employed to analyse the changes underlying CAM induction and identify potential CAM regulators. Non-negative matrix factorization followed by k-means clustering identified an early CAM-specific cluster and a late one, which was specific for the early light phase. Enrichment analysis revealed abscisic acid metabolism, WRKY-regulated transcription, sugar and nutrient transport, and protein degradation in these clusters. Activation of the CAM pathway was supported by up-regulation of phosphoenolpyruvate carboxylase, cytosolic and chloroplastic malic enzymes, and several transport proteins, as well as by increased end-of-night titratable acidity and malate accumulation. The transcription factors HSFA2, NF-YA9, and JMJ27 were identified as candidate regulators of CAM induction. With this study we promote the model species T. triangulare, in which CAM can be induced in a controlled way, enabling further deciphering of CAM regulation

    Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare

    No full text
    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism(CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C-3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C-3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM

    Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes

    No full text
    Environmental stresses such as drought, heat, and salinity limit plant development and agricultural productivity. While individual stresses have been studied extensively, much less is known about the molecular interaction of responses to multiple stresses. To address this problem, we investigated molecular responses of Arabidopsis to single, double, and triple combinations of salt, osmotic, and heat stresses. A metabolite profiling analysis indicated the production of specific compatible solutes depending on the nature of the stress applied. We found that in combination with other stresses, heat has a dominant effect on global gene expression and metabolite level patterns. Treatments that include heat stress lead to strongly reduced transcription of genes coding for abundant photosynthetic proteins and proteins regulating the cell life cycle, while genes involved in protein degradation are up-regulated. Under combined stress conditions, the plants shifted their metabolism to a survival state characterized by low productivity. Our work provides molecular evidence for the dangers for plant productivity and future world food security posed by heat waves resulting from global warming. We highlight candidate genes, many of which are functionally uncharacterized, for engineering plant abiotic stress tolerance

    DataPLAN: A Web-Based Data Management Plan Generator for the Plant Sciences

    No full text
    Research data management (RDM) combines a set of practices for the organization, storage and preservation of data from research projects. The RDM strategy of a project is usually formalized as a data management plan (DMP)—a document that sets out procedures to ensure data findability, accessibility, interoperability and reusability (FAIR-ness). Many aspects of RDM are standardized across disciplines so that data and metadata are reusable, but the components of DMPs in the plant sciences are often disconnected. The inability to reuse plant-specific DMP content across projects and funding sources requires additional time and effort to write unique DMPs for different settings. To address this issue, we developed DataPLAN—an open-source tool incorporating prewritten DMP content for the plant sciences that can be used online or offline to prepare multiple DMPs. The current version of DataPLAN supports Horizon 2020 and Horizon Europe projects, as well as projects funded by the German Research Foundation (DFG). Furthermore, DataPLAN offers the option for users to customize their own templates. Additional templates to accommodate other funding schemes will be added in the future. DataPLAN reduces the workload needed to create or update DMPs in the plant sciences by presenting standardized RDM practices optimized for different funding contexts
    corecore