38 research outputs found

    P2RX7 Purinoceptor: A Therapeutic Target for Ameliorating the Symptoms of Duchenne Muscular Dystrophy

    Get PDF
    open access articleDuchenne muscular dystrophy (DMD) is the most common inherited muscle disease, leading to severe disability and death in young men. Death is caused by the progressive degeneration of striated muscles aggravated by sterile inflammation. The pleiotropic effects of the mutant gene also include cognitive and behavioral impairments and low bone density. Current interventions in DMD are palliative only as no treatment improves the long-term outcome. Therefore, approaches with a translational potential should be investigated, and key abnormalities downstream from the absence of the DMD product, dystrophin, appear to be strong therapeutic targets. We and others have demonstrated that DMD mutations alter ATP signaling and have identified P2RX7 purinoceptor up-regulation as being responsible for the death of muscles in the mdx mouse model of DMD and human DMD lymphoblasts. Moreover, the ATP–P2RX7 axis, being a crucial activator of innate immune responses, can contribute to DMD pathology by stimulating chronic inflammation. We investigated whether ablation of P2RX7 attenuates the DMD model mouse phenotype to assess receptor suitability as a therapeutic target

    Micro-spectrometer for NMR: analysis of small quantities in vitro

    No full text
    International audienc

    NMR antenna for an interstitial ultrasound applicator

    No full text
    The aim of this work is to study and design a NMR micro antenna dedicated to ultrasound lesion monitoring by imaging. This micro-antenna will be associated with an oesophageal ultrasound applicator used for oesophagus tumour therapy to provide guidance and monitoring by magnetic resonance imaging (MRI). So, the micro-antenna design was guided by size and shape constraints due to endocavitary applications and adaptation to the ultrasound applicator. In this scope, a coil of N rectangular loops was built. In order to minimise size and offer the ability to perform in vivo adjustments, remote tuning and matching was performed. MRI investigations were carried out using two antennas: a volumic transmitter coil for excitation and this endoscopic receiver coil for signal capture. Lesion can be clearly seen on T2-weighted MR imaging. Lesion measurements on sagittal and axial slices gave a good correlation with lesion dimensions measured on sample

    NMR planar microcoil for microanalysis

    No full text
    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ\mu -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field
    corecore