6,203 research outputs found
Analysis of surface tris (2,3-dibromopropyl) phosphate on chlorobutyl rubber SCAPE suits
Tris (2,30-dibromopropyl) phosphate was used to confer flame retardant properties on butyl rubber formulations used in protective clothing such as the self-contained atmospheric protective ensembles (SCAPE suits) worn at Kennedy Space Center in support of Apollo, Skylab, and Apollo-Soyuz missions since 1966. Because tris (2,3-dibromopropyl) phosphate is mutagenic, surface concentrations of the compound in SCAPE suits were investigated as were as potential methods of removing or isolating it. Analytical procedures for determining surface concentrations of the tris compound on non-porous materials are described. Soap-and-water washing is the most efficient method of removing the compound from fabricated SCAPE suits and unused material
Discourse and identity in a corpus of lesbian erotica
This article uses corpus linguistic methodologies to explore representations of lesbian desires and identities in a corpus of lesbian erotica from the 1980s and 1990s. We provide a critical examination of the ways in which “lesbian gender,” power, and desire are represented, (re-)produced, and enacted, often in ways that challenge hegemonic discourses of gender and sexuality. By examining word frequencies and collocations, we critically analyze some of the themes, processes, and patterns of representation in the texts. Although rooted in linguistics, we hope this article provides an accessible, interdisciplinary, and timely contribution toward developing understandings of discursive practices surrounding gender and sexuality
Tip-Clearance Actuation With Magnetic Bearings for High-Speed Compressor Stall Control
Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed which fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100% corrected design speed resulted in a 2.3% reduction of stalling mass flow which is comparable to results obtained in the same compressor by Weigl et al. (1998) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.United States. National Aeronautics and Space Administration (Grant NAG3-1457
Total column CO_2 measurements at Darwin, Australia – site description and calibration against in situ aircraft profiles
An automated Fourier Transform Spectroscopic (FTS) solar observatory was established in Darwin, Australia in August 2005. The laboratory is part of the Total Carbon Column Observing Network, and measures atmospheric column abundances of CO_2 and O_2 and other gases. Measured CO_2 columns were calibrated against integrated aircraft profiles obtained during the TWP-ICE campaign in January–February 2006, and show good agreement with calibrations for a similar instrument in Park Falls, Wisconsin. A clear-sky low airmass relative precision of 0.1% is demonstrated in the CO2 and O2 retrieved column-averaged volume mixing ratios. The 1% negative bias in the FTS X_(CO_2) relative to the World Meteorological Organization (WMO) calibrated in situ scale is within the uncertainties of the NIR spectroscopy and analysis
Metacognitive beliefs as psychological predictors of social functioning: An investigation with young people at risk of psychosis
Poor social functioning has been found to be present in those at risk for psychosis. This study aimed to examine metacognitive beliefs as potential predictors of structured activity (measure of social functioning) in those with an At Risk Mental State (ARMS). Regression and correlation analyses were conducted. The sample included 109 young people. Age was found to be positively correlated to structured activity. Metacognitive beliefs concerning uncontrollability and danger of worry were found to negatively predict structured activity. This was after controlling for age, gender, treatment allocation, cognitive schemas, positive symptom severity, social anxiety, and depression. Metacognitive danger items were most important. Age was the only control variable found to be an independent predictor of structured activity in the regression model, despite negative bi-variate relationships with structured activity found across three cognitive schema subscales and social anxiety. This is the first study to find that higher negative metacognitive beliefs about uncontrollability and danger predict lower social functioning in an ARMS sample, and that the perception of thoughts being dangerous was of particular importance. Psychological interventions should consider targeting this metacognitive dimension to increase social functioning. Future longitudinal research is required to strengthen findings in this area.The EDIE-2 trial was funded by the Medical Research Council (G0500264) and the Department of Health. Max Birchwood is part funded by the National Institute for Health Research through the Collaborations for Leadership in Applied Health Research and Care for West Midlands (CLAHRC-WM)
Infrared spectroscopy of ionized corannulene in the gas phase
The gas-phase infrared spectra of radical cationic and protonated corannulene were recorded by infrared multiple-photon dissociation (IRMPD) spectroscopy using the IR free electron laser for infrared experiments. Electrospray ionization was used to generate protonated corannulene and an IRMPD spectrum was recorded in a Fourier-transform ion cyclotron resonance mass spectrometer monitoring H-loss as a function of IR frequency. The radical cation was produced by 193-nm UV photoionization of the vapor of corannulene in a 3D quadrupole trap and IR irradiation produces H, H2, and C2Hx losses. Summing the spectral response of the three fragmentation channels yields the IRMPD spectrum of the radical cation. The spectra were analyzed with the aid of quantum-chemical calculations carried out at various levels of theory. The good agreement of theoretical and experimental spectra for protonated corannulene indicates that protonation occurs on one of the peripheral C-atoms, forming an sp3 hybridized carbon. The spectrum of the radical cation was examined taking into account distortions of the C5v geometry induced by the Jahn-Teller effect as a consequence of the degenerate 2E1 ground electronic state. As indicated by the calculations, the five equivalent Cs minima are separated by marginal barriers, giving rise to a dynamically distorted system. Although in general the character of the various computed vibrational bands appears to be in order, only a qualitative match to the experimental spectrum is found. Along with a general redshift of the calculated frequencies, the IR intensities of modes in the 1000-1250 cm−1 region show the largest discrepancy with the harmonic predictions. In addition to CH "in-plane" bending vibrations, these modes also exhibit substantial deformation of the pentagonal inner ring, which may relate directly to the vibronic interaction in the radical cation
Examining the Influence of COVID-19 on Elementary Mathematics Standardized Test Scores in a Rural Ohio School District
In the United States, national and state standardized assessments have become a metric for measuring student learning and high-quality learning environments. As the COVID-19 pandemic offered a multitude of learning modalities (e.g., hybrid, socially distanced face-to-face instruction, virtual environment), it becomes critical to examine how this learning disruption influenced elementary mathematic performance. This study tested for differences in mathematics performance on fourth grade standardized tests before and during COVID-19 in a case study of a rural Ohio school district using the Measure of Academic Progress (MAP) mathematics test. A two-way ANOVA showed that fourth- grade MAP mathematics scores were statistically similar for the 2019 pre-COVID cohort (n = 31) and 2020 COVID-19 cohort (n = 82), and by gender group, between Fall 2019 and Fall 2020. Implications for rural students’ academic performance in virtual learning environments are discussed
- …