917 research outputs found
Evidence for a black hole spin--orbit misalignment in the X-ray binary Cyg X-1
Recently, the accretion geometry of the black-hole X-ray binary Cyg X-1 was
probed with the X-ray polarization. The position angle of the X-ray emitting
flow was found to be aligned with the position angle of the radio jet in the
plane of the sky. At the same time, the observed high polarization degree could
be obtained only for a high inclination of the X-ray emitting flow, indicating
a misalignment between the binary axis and the black hole spin. The jet, in
turn, is believed to be directed by the spin axis, hence similar misalignment
is expected between the jet and binary axes. We test this hypothesis using very
long (up to about 26 years) multi-band radio observations. We find the
misalignment of --. However, on the contrary to the earlier
expectations, the jet and binary viewing angles are found to be similar, while
the misalignment is seen between position angles of the jet and the binary axis
on the plane of the sky. Furthermore, the presence of the misalignment
questions our understanding of the evolution of this binary system.Comment: ApJL, in pres
The luminosity phase space of galactic and extragalactic X-Ray transients out to intermediate redshifts
We present a detailed compilation and analysis of the X-ray phase space of low- to intermediate-redshift (0 ≤ z ≤ 1) transients that consolidates observed light curves (and theory where necessary) for a large variety of classes of transient/variable phenomena in the 0.3–10 keV energy band. We include gamma-ray burst afterglows, supernovae, supernova shock breakouts and shocks interacting with the environment, tidal disruption events and active galactic nuclei, fast blue optical transients, cataclysmic variables, magnetar flares/outbursts and fast radio bursts, cool stellar flares, X-ray binary outbursts, and ultraluminous X-ray sources. Our overarching goal is to offer a comprehensive resource for the examination of these ephemeral events, extending the X-ray duration–luminosity phase space (DLPS) to show luminosity evolution. We use existing observations (both targeted and serendipitous) to characterize the behavior of various transient/variable populations. Contextualizing transient signals in the larger DLPS serves two primary purposes: to identify areas of interest (i.e., regions in the parameter space where one would expect detections, but in which observations have historically been lacking), and to provide initial qualitative guidance in classifying newly discovered transient signals. We find that while the most luminous (largely extragalactic) and least luminous (largely Galactic) part of the phase space is well populated at t > 0.1 days, intermediate-luminosity phenomena (L X = 1034–1042 erg s−1) represent a gap in the phase space. We thus identify L X = 1034–1042 erg s−1 and t = 10−4 to 0.1 days as a key discovery phase space in transient X-ray astronomy
Precise Measurements of Self-absorbed Rising Reverse Shock Emission from Gamma-ray Burst 221009A
The deaths of massive stars are sometimes accompanied by the launch of highly
relativistic and collimated jets. If the jet is pointed towards Earth, we
observe a "prompt" gamma-ray burst due to internal shocks or magnetic
reconnection events within the jet, followed by a long-lived broadband
synchrotron afterglow as the jet interacts with the circum-burst material.
While there is solid observational evidence that emission from multiple shocks
contributes to the afterglow signature, detailed studies of the reverse shock,
which travels back into the explosion ejecta, are hampered by a lack of
early-time observations, particularly in the radio band. We present rapid
follow-up radio observations of the exceptionally bright gamma-ray burst GRB
221009A which reveal an optically thick rising component from the reverse shock
in unprecedented detail both temporally and in frequency space. From this, we
are able to constrain the size, Lorentz factor, and internal energy of the
outflow while providing accurate predictions for the location of the peak
frequency of the reverse shock in the first few hours after the burst.Comment: 11 figures, 4 table
Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 ± 0.1 mag hr-1) and luminous (Mg,peak = -20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (Lbol ≳ 3 × 1044 erg s-1), the short rise time (trise = 3 days in g band), and the blue colors at peak (g-r ∼ -0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (Teff ≳ 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (Mg ∼ Mr ≈ mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E γ,iso \u3c 4.9 × 10 48 erg, a limit on X-ray emission LX \u3c 1040 erg s-1, and a limit on radio emission ν Lν ≲ 1037 erg s-1. Taken together, we find that the early (\u3c 10 days) data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3 × 1014 cm) that was ejected in eruptive pre-explosion mass-loss episodes. The late-time (\u3e 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56
Radio analysis of SN2004C reveals an unusual CSM density profile as a harbinger of core collapse
We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion's forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06 c that carries an energy of ≈1049 erg. Our modeling further reveals a flat CSM density profile ρCSM ∝ R−0.03±0.22 up to a break radius Rbr ≈ (1.96 ± 0.10) × 1016 cm, with a steep density gradient following ρCSM ∝ R−2.3±0.5 at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021 M☉, and that the progenitor's effective mass-loss rate varied with time over the range (50–500) × 10−5 M☉ yr−1 for an adopted wind velocity vw = 1000 km s−1 and shock microphysical parameters epsilone = 0.1, epsilonB = 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass loss powered by gravity waves and/or interaction with a binary companion
The Death Throes of a Stripped Massive Star: An Eruptive Mass-Loss History Encoded in Pre-Explosion Emission, a Rapidly Rising Luminous Transient, and a Broad-Lined Ic Supernova SN2018gep
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.3 mag/hr) and luminous (M_(g,peak) = −20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The rapid rise to peak bolometric luminosity and blue colors at peak (t_(rise)∼0.5-3 days, L_(bol)≳3×10^(44) erg sec^(−1), g−r = −0.3) resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T_(eff) ≳ 40,000K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M_g ∼ M_r ≈ −14mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E_(γ,iso) < 4.9×10^(48) erg, a limit on X-ray emission L_X < 10^(40) erg sec^(−1), and a limit on radio emission νL_ν ≲ 10^(37) erg sec^(−1). Taken together, we find that the data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3×10^(14)cm) that was ejected in eruptive pre-explosion mass-loss episodes
Evidence for Extended Hydrogen-Poor CSM in the Three-Peaked Light Curve of Stripped Envelope Ib Supernova
We present multi-band ATLAS photometry for SN 2019tsf, a stripped-envelope
Type Ib supernova (SESN). The SN shows a triple-peaked light curve and a late
(re-)brightening, making it unique among stripped-envelope systems. The
re-brightening observations represent the latest photometric measurements of a
multi-peaked Type Ib SN to date. As late-time photometry and spectroscopy
suggest no hydrogen, the potential circumstellar material (CSM) must be H-poor.
Moreover, late (>150 days) spectra show no signs of narrow emission lines,
further disfavouring CSM interaction. On the contrary, an extended CSM
structure is seen through a follow-up radio campaign with Karl G. Jansky Very
Large Array (VLA), indicating a source of bright optically thick radio emission
at late times, which is highly unusual among H-poor SESNe. We attribute this
phenomenology to an interaction of the supernova ejecta with
spherically-asymmetric CSM, potentially disk-like, and we present several
models that can potentially explain the origin of this rare Type Ib supernova.
The warped disc model paints a novel picture, where the tertiary companion
perturbs the progenitors CSM, that can explain the multi-peaked light curves of
SNe, and here we apply it to SN 2019tsf. This SN 2019tsf is likely a member of
a new sub-class of Type Ib SNe and among the recently discovered class of SNe
that undergo mass transfer at the moment of explosionComment: 23 pages, Comments are welcome, Submitted to Ap
Radio and X-ray observations of the luminous fast blue optical transient AT 2020xnd
We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 1029 erg s−1 Hz−1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 1042 erg s−1. Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow (v ∼ 0.1c–0.2c) propagating into a dense circumstellar medium (effective Ṁ≈10−3M⊙ yr−1 for an assumed wind velocity of v w = 1000 km s−1). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These properties make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts
Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.4 ± 0.1 mag/hr) and luminous (M_(g,peak) = −20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The high peak luminosity (L_(bol) ≳ 3×10^(44) erg sec^(−1)), the short rise time (t_(rise) = 3 days in g-band), and the blue colors at peak (g−r ∼ −0.4) all resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T_(eff) ≳ 40,000 K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M_g ∼ M_r ≈ −14mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E_(γ,iso) 10 days) light curve requires an additional energy source, which could be the radioactive decay of Ni-56
The Death Throes of a Stripped Massive Star: An Eruptive Mass-Loss History Encoded in Pre-Explosion Emission, a Rapidly Rising Luminous Transient, and a Broad-Lined Ic Supernova SN2018gep
We present detailed observations of ZTF18abukavn (SN2018gep), discovered in high-cadence data from the Zwicky Transient Facility as a rapidly rising (1.3 mag/hr) and luminous (M_(g,peak) = −20 mag) transient. It is spectroscopically classified as a broad-lined stripped-envelope supernova (Ic-BL SN). The rapid rise to peak bolometric luminosity and blue colors at peak (t_(rise)∼0.5-3 days, L_(bol)≳3×10^(44) erg sec^(−1), g−r = −0.3) resemble the high-redshift Ic-BL iPTF16asu, as well as several other unclassified fast transients. The early discovery of SN2018gep (within an hour of shock breakout) enabled an intensive spectroscopic campaign, including the highest-temperature (T_(eff) ≳ 40,000K) spectra of a stripped-envelope SN. A retrospective search revealed luminous (M_g ∼ M_r ≈ −14mag) emission in the days to weeks before explosion, the first definitive detection of precursor emission for a Ic-BL. We find a limit on the isotropic gamma-ray energy release E_(γ,iso) < 4.9×10^(48) erg, a limit on X-ray emission L_X < 10^(40) erg sec^(−1), and a limit on radio emission νL_ν ≲ 10^(37) erg sec^(−1). Taken together, we find that the data are best explained by shock breakout in a massive shell of dense circumstellar material (0.02 M⊙) at large radii (3×10^(14)cm) that was ejected in eruptive pre-explosion mass-loss episodes
- …