815 research outputs found

    Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: Extension to post-Newtonian wave forms

    Get PDF
    The detection of gravitational waves from coalescing compact binaries would be a computationally intensive process if a single bank of template wave forms (i.e., a one step search) is used. In an earlier paper we had presented a detection strategy, called a two step search}, that utilizes a hierarchy of template banks. It was shown that in the simple case of a family of Newtonian signals, an on-line two step search was about 8 times faster than an on-line one step search (for initial LIGO). In this paper we extend the two step search to the more realistic case of zero spin 1.5 post-Newtonian wave forms. We also present formulas for detection and false alarm probabilities which take statistical correlations into account. We find that for the case of a 1.5 post-Newtonian family of templates and signals, an on-line two step search requires about 1/21 the computing power that would be required for the corresponding on-line one step search. This reduction is achieved when signals having strength S = 10.34 are required to be detected with a probability of 0.95, at an average of one false event per year, and the noise power spectral density used is that of advanced LIGO. For initial LIGO, the reduction achieved in computing power is about 1/27 for S = 9.98 and the same probabilities for detection and false alarm as above.Comment: 30 page RevTeX file and 17 figures (postscript). Submitted to PRD Feb 21, 199

    What We Don't Know about BTZ Black Hole Entropy

    Get PDF
    With the recent discovery that many aspects of black hole thermodynamics can be effectively reduced to problems in three spacetime dimensions, it has become increasingly important to understand the ``statistical mechanics'' of the (2+1)-dimensional black hole of Banados, Teitelboim, and Zanelli (BTZ). Several conformal field theoretic derivations of the BTZ entropy exist, but none is completely satisfactory, and many questions remain open: there is no consensus as to what fields provide the relevant degrees of freedom or where these excitations live. In this paper, I review some of the unresolved problems and suggest avenues for their solution.Comment: 24 pages, LaTeX, no figures; references added, brief discussion of relation to string theory added; to appear in Class. Quant. Gra

    Improving Breast Cancer Survival Analysis through Competition-Based Multidimensional Modeling

    Get PDF
    Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually. As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently. Understanding the difference in prognosis for breast cancer based on its molecular and phenotypic features is one avenue for improving treatment by matching the proper treatment with molecular subtypes of the disease. In this work, we employed a competition-based approach to modeling breast cancer prognosis using large datasets containing genomic and clinical information and an online real-time leaderboard program used to speed feedback to the modeling team and to encourage each modeler to work towards achieving a higher ranked submission. We find that machine learning methods combined with molecular features selected based on expert prior knowledge can improve survival predictions compared to current best-in-class methodologies and that ensemble models trained across multiple user submissions systematically outperform individual models within the ensemble. We also find that model scores are highly consistent across multiple independent evaluations. This study serves as the pilot phase of a much larger competition open to the whole research community, with the goal of understanding general strategies for model optimization using clinical and molecular profiling data and providing an objective, transparent system for assessing prognostic models

    13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16

    Get PDF
    Introduction. Cupriavidus necator H16 is a gram-negative bacterium, capable of lithoautotrophic growth by utilizing hydrogen as an energy source and fixing carbon dioxide (CO2) through Calvin-Benson-Bassham (CBB) cycle. The potential to utilize synthesis gas (Syngas) and the prospects of rerouting carbon from polyhydroxybutyrate synthesis to value-added compounds makes C. necator an excellent chassis for industrial application. Objectives. In the context of lack of sufficient quantitative information of the metabolic pathways and to advance in rational metabolic engineering for optimized product synthesis in C. necator H16, we carried out a metabolic flux analysis based on steady-state 13C-labelling. Methods. In this study, steady-state carbon labelling experiments, using either D-[1-13C]fructose or [1,2-13C]glycerol, were undertaken to investigate the carbon flux through the central carbon metabolism in C. necator H16 under heterotrophic and mixotrophic growth conditions, respectively. Results. We found that the CBB cycle is active even under heterotrophic condition, and growth is indeed mixotrophic. While Entner-Doudoroff (ED) pathway is shown to be the major route for sugar degradation, tricarboxylic acid (TCA) cycle is highly active in mixotrophic condition. Enhanced flux is observed in reductive pentose phosphate pathway (redPPP) under the mixotrophic condition to supplement the precursor requirement for CBB cycle. The flux distribution was compared to the mRNA abundance of genes encoding enzymes involved in key enzymatic reactions of the central carbon metabolism. Conclusion. This study leads the way to establishing 13C-based quantitative fluxomics for rational pathway engineering in C. necator H16

    Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    Get PDF
    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds

    Implied cost of capital investment strategies - evidence from international stock markets

    Get PDF
    Investors can generate excess returns by implementing trading strategies based on publicly available equity analyst forecasts. This paper captures the information provided by analysts by the implied cost of capital (ICC), the internal rate of return that equates a firm's share price to the present value of analysts' earnings forecasts. We find that U.S. stocks with a high ICC outperform low ICC stocks on average by 6.0% per year. This spread is significant when controlling the investment returns for their risk exposure as proxied by standard pricing models. Further analysis across the world's largest equity markets validates these results

    Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha

    Get PDF
    Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180 mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14 g/L branched-chain alcohols over the duration of 50 days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.United States. Dept. of EnergyUnited States. Advanced Research Projects Agency-Energ

    The use of sewage treatment works as foraging sites by insectivorous bats

    Get PDF
    Sewage treatment works with percolating filter beds are known to provide profitable foraging areas for insectivorous birds due to their association with high macroinvertebrate densities. Fly larvae developing on filter beds at sewage treatment works may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of “activated sludge”. Insects and bat activity were surveyed at 30 sites in Scotland employing these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. was significantly higher at filter beds than at activated sludge sites. In addition, whilst foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent “good” foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats
    corecore