39 research outputs found

    The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation.

    Get PDF
    OBJECTIVE: Knowledge of the cellular mechanisms involved in homeostasis of human squamous oesophagus in the steady state and following chronic injury is limited. We aimed to better understand these mechanisms by using a functional 3D approach. DESIGN: Proliferation, mitosis and the expression of progenitor lineage markers were assessed in normal squamous oesophagus from 10 patients by immunofluorescence on 3D epithelial whole mounts. Cells expressing differential levels of epithelial and progenitor markers were isolated using flow cytometry sorting and characterised by qPCR and IF. Their self-renewing potential was investigated by colony forming cells assays and in vitro organotypic culture models. RESULTS: Proliferation and mitotic activity was highest in the interpapillary basal layer and decreased linearly towards the tip of the papilla (p<0.0001). The orientation of mitosis was random throughout the basal layer, and asymmetric divisions were not restricted to specific cell compartments. Cells sorted into distinct populations based on the expression of epithelial and progenitor cell markers (CD34 and EpCAM) showed no difference in self-renewal in 2D culture, either as whole populations or as single cells. In 3D organotypic cultures, all cell subtypes were able to recapitulate the architecture of the tissue of origin and the main factor determining the success of the 3D culture was the number of cells plated, rather than the cell type. CONCLUSIONS: Oesophageal epithelial cells demonstrate remarkable plasticity for self-renewal. This situation could be viewed as an ex vivo wounding response and is compatible with recent findings in murine models

    Radiation Safety in the Treatment of Patients with Thyroid Diseases by Radioiodine 131I: Practice Recommendations of the American Thyroid Association

    Full text link
    Background: Radiation safety is an essential component in the treatment of patients with thyroid diseases by 131I. The American Thyroid Association created a task force to develop recommendations that would inform medical professionals about attainment of radiation safety for patients, family members, and the public. The task force was constituted so as to obtain advice, experience, and methods from relevant medical specialties and disciplines. Methods: Reviews of Nuclear Regulatory Commission regulations and International Commission on Radiological Protection recommendations formed the basic structure of recommendations. Members of the task force contributed both ideas and methods that are used at their respective institutions to aid groups responsible for treatments and that instruct patients and caregivers in the attainment of radiation safety. There are insufficient data on long-term outcomes to create evidence-based guidelines. Results: The information was used to compile delineations of radiation safety. Factors and situations that govern implementation of safety practices are cited and discussed. Examples of the development of tables to ascertain the number of hours or days (24-hour cycles) of radiation precaution appropriate for individual patients treated with 131I for hyperthyroidism and thyroid cancer have been provided. Reminders in the form of a checklist are presented to assist in assessing patients while taking into account individual circumstances that would bear on radiation safety. Information is presented to supplement the treating physician's advice to patients and caregivers on precautions to be adopted within and outside the home. Conclusion: Recommendations, complying with Nuclear Regulatory Commission regulations and consistent with guidelines promulgated by the National Council on Radiation Protection and Measurement (NCRP-155), can help physicians and patients maintain radiation safety after treatment with 131I of patients with thyroid diseases. Both treating physicians and patients must be informed if radiation safety, an integral part of therapy with 131I, is to be attained. Based on current regulations and understanding of radiation exposures, recommendations have been made to guide physicians and patients in safe practices after treatment with radioactive iodine.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90492/1/thy-2E2010-2E0403.pd

    Inconclusive Bone Scan in Men with Intermediate and High-risk Prostate Cancer:What next?

    Get PDF
    Objective: To evaluate the incidence of inconclusive bone scans and down-stream imaging and clinical follow-up generated, including subsequent treatment outcomes in men affected by inconclusive bone scans with intermediate- and high-risk prostate cancer. Data Sources: Retrospective study of clinical data for a Scottish population of men diagnosed with prostate cancer in the intermediate and high-risk groups. Conclusion: Of the 1,246 patients included, initially 81 men were identified as having an inconclusive bone scan result following multidisciplinary team discussion. After further imaging, 24 patients remained inconclusive for metastasis. Of these, two patients received no treatment; one because of a watchful waiting decision, and one because of death. Of the 13 patients receiving radical treatment (laparoscopic radical prostatectomy or radiotherapy), three patients showed relapse (23%) indicating presence of microscopic disease and failure of radical treatment alone for these patients. Implications for Nursing Practice: This paper will assist nurses and multidisciplinary team members in understanding how patients diagnosed with intermediate- and high-risk prostate cancer with inconclusive bone scan results are subsequently imaged and managed in the current health care system. This raises awareness amongst nursing staff of disease recurrence and the possibility of downstream multimodality treatment for these men with inconclusive bone scans

    Manipulation of the unfolded protein response: A pharmacological strategy against coronavirus infection.

    Get PDF
    Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection

    A randomised-controlled feasibility study of the REgulate your SItting Time (RESIT) intervention for reducing sitting time in individuals with type 2 diabetes: study protocol

    Get PDF
    Background: People with type 2 diabetes mellitus (T2DM) generally spend a large amount of time sitting. This increases their risk of cardiovascular disease, premature mortality, diabetes-related complications and mental health problems. There is a paucity of research that has evaluated interventions aimed at reducing and breaking up sitting in people with T2DM. The primary aim of this study is to assess the feasibility of delivering and evaluating a tailored intervention to reduce and break up sitting in ambulatory adults with T2DM. Methods: This is a mixed-methods randomised controlled feasibility trial. Participants (n=70) with T2DM aged 18-85years who sit≥7 h/day and are able to ambulate independently will be randomly allocated to receive the REgulateyour SItting Time (RESIT) intervention or usual care (control group) for 24 weeks. RESIT is a person-focused intervention that delivers a standardised set of behaviour change techniques to the participants, but the modethrough which they are delivered can vary depending on the tools selected by each participant. The intervention includes an online education programme, health coach support, and a range of self-selected tools (smartphone apps, computer-prompt software, and wearable devices) that deliver behaviour change techniques such as self-monitoring of sitting and providing prompts to break up sitting. Measures will be taken at baseline, 12 and 24weeks. Eligibility, recruitment, retention and data completion rates will be used to assess trial feasibility. Sitting,standing and stepping will be measured using a thigh-worn activity monitor. Cardiometabolic health, physical function, psychological well-being, sleep and musculoskeletal symptoms will also be assessed. A process evaluation will be conducted including evaluation of intervention acceptability and fidelity. Discussion: This study will identify the feasibility of delivering a tailored intervention to reduce and break up sitting in ambulatory adults with T2DM and evaluating it through a randomised controlled trial (RCT) design. The findings will inform a fully powered RCT to evaluate the effectiveness of the intervention

    Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution

    Get PDF
    Understanding the genetic and nongenetic determinants of tumor protein 53 (TP53)-mutation-driven clonal evolution and subsequent transformation is a crucial step toward the design of rational therapeutic strategies. Here we carry out allelic resolution single-cell multi-omic analysis of hematopoietic stem/progenitor cells (HSPCs) from patients with a myeloproliferative neoplasm who transform to TP53-mutant secondary acute myeloid leukemia (sAML). All patients showed dominant TP53 ‘multihit’ HSPC clones at transformation, with a leukemia stem cell transcriptional signature strongly predictive of adverse outcomes in independent cohorts, across both TP53-mutant and wild-type (WT) AML. Through analysis of serial samples, antecedent TP53-heterozygous clones and in vivo perturbations, we demonstrate a hitherto unrecognized effect of chronic inflammation, which suppressed TP53 WT HSPCs while enhancing the fitness advantage of TP53-mutant cells and promoted genetic evolution. Our findings will facilitate the development of risk-stratification, early detection and treatment strategies for TP53-mutant leukemia, and are of broad relevance to other cancer types

    Improving the efficiency and effectiveness of an industrial SARS-CoV-2 diagnostic facility.

    Get PDF
    On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    A tale of two alleles: TP53 and transformation in MPNs

    No full text
    corecore