9 research outputs found

    Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[e]imidazo[2,1-c][1,2,4]triazines as Phosphodiesterase 2A Inhibitors

    Get PDF
    Phosphodiesterase 2A (PDE2A) is highly expressed in distinct areas of the brain, which are known to be related to neuropsychiatric diseases. The development of suitable PDE2A tracers for Positron Emission Tomography (PET) would permit the in vivo imaging of the PDE2A and evaluation of disease-mediated alterations of its expression. A series of novel fluorinated PDE2A inhibitors on the basis of a Benzoimidazotriazine (BIT) scaffold was prepared leading to a prospective inhibitor for further development of a PDE2A PET imaging agent. BIT derivatives (BIT1–9) were obtained by a seven-step synthesis route, and their inhibitory potency towards PDE2A and selectivity over other PDEs were evaluated. BIT1 demonstrated much higher inhibition than other BIT derivatives (82.9% inhibition of PDE2A at 10 nM). BIT1 displayed an IC50 for PDE2A of 3.33 nM with 16-fold selectivity over PDE10A. This finding revealed that a derivative bearing both a 2-fluoro-pyridin-4-yl and 2-chloro-5-methoxy-phenyl unit at the 8- and 1-position, respectively, appeared to be the most potent inhibitor. In vitro studies of BIT1 using mouse liver microsomes (MLM) disclosed BIT1 as a suitable ligand for 18F-labeling. Nevertheless, future in vivo metabolism studies are required

    Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[e]imidazo[2,1-c][1,2,4]triazines as Phosphodiesterase 2A Inhibitors

    No full text
    Phosphodiesterase 2A (PDE2A) is highly expressed in distinct areas of the brain, which are known to be related to neuropsychiatric diseases. The development of suitable PDE2A tracers for Positron Emission Tomography (PET) would permit the in vivo imaging of the PDE2A and evaluation of disease-mediated alterations of its expression. A series of novel fluorinated PDE2A inhibitors on the basis of a Benzoimidazotriazine (BIT) scaffold was prepared leading to a prospective inhibitor for further development of a PDE2A PET imaging agent. BIT derivatives (BIT1–9) were obtained by a seven-step synthesis route, and their inhibitory potency towards PDE2A and selectivity over other PDEs were evaluated. BIT1 demonstrated much higher inhibition than other BIT derivatives (82.9% inhibition of PDE2A at 10 nM). BIT1 displayed an IC50 for PDE2A of 3.33 nM with 16-fold selectivity over PDE10A. This finding revealed that a derivative bearing both a 2-fluoro-pyridin-4-yl and 2-chloro-5-methoxy-phenyl unit at the 8- and 1-position, respectively, appeared to be the most potent inhibitor. In vitro studies of BIT1 using mouse liver microsomes (MLM) disclosed BIT1 as a suitable ligand for 18F-labeling. Nevertheless, future in vivo metabolism studies are required

    Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[e]imidazo[2,1-c][1,2,4]triazines as Phosphodiesterase 2A Inhibitors

    No full text
    Phosphodiesterase 2A (PDE2A) is highly expressed in distinct areas of the brain, which are known to be related to neuropsychiatric diseases. The development of suitable PDE2A tracers for Positron Emission Tomography (PET) would permit the in vivo imaging of the PDE2A and evaluation of disease-mediated alterations of its expression. A series of novel fluorinated PDE2A inhibitors on the basis of a Benzoimidazotriazine (BIT) scaffold was prepared leading to a prospective inhibitor for further development of a PDE2A PET imaging agent. BIT derivatives (BIT1–9) were obtained by a seven-step synthesis route, and their inhibitory potency towards PDE2A and selectivity over other PDEs were evaluated. BIT1 demonstrated much higher inhibition than other BIT derivatives (82.9% inhibition of PDE2A at 10 nM). BIT1 displayed an IC50 for PDE2A of 3.33 nM with 16-fold selectivity over PDE10A. This finding revealed that a derivative bearing both a 2-fluoro-pyridin-4-yl and 2-chloro-5-methoxy-phenyl unit at the 8- and 1-position, respectively, appeared to be the most potent inhibitor. In vitro studies of BIT1 using mouse liver microsomes (MLM) disclosed BIT1 as a suitable ligand for 18F-labeling. Nevertheless, future in vivo metabolism studies are required

    Synthesis and In Vitro Evaluation of 8-Pyridinyl-Substituted Benzo[e]imidazo[2,1-c][1,2,4]triazines as Phosphodiesterase 2A Inhibitors

    No full text
    Phosphodiesterase 2A (PDE2A) is highly expressed in distinct areas of the brain, which are known to be related to neuropsychiatric diseases. The development of suitable PDE2A tracers for Positron Emission Tomography (PET) would permit the in vivo imaging of the PDE2A and evaluation of disease-mediated alterations of its expression. A series of novel fluorinated PDE2A inhibitors on the basis of a Benzoimidazotriazine (BIT) scaffold was prepared leading to a prospective inhibitor for further development of a PDE2A PET imaging agent. BIT derivatives (BIT1–9) were obtained by a seven-step synthesis route, and their inhibitory potency towards PDE2A and selectivity over other PDEs were evaluated. BIT1 demonstrated much higher inhibition than other BIT derivatives (82.9% inhibition of PDE2A at 10 nM). BIT1 displayed an IC50 for PDE2A of 3.33 nM with 16-fold selectivity over PDE10A. This finding revealed that a derivative bearing both a 2-fluoro-pyridin-4-yl and 2-chloro-5-methoxy-phenyl unit at the 8- and 1-position, respectively, appeared to be the most potent inhibitor. In vitro studies of BIT1 using mouse liver microsomes (MLM) disclosed BIT1 as a suitable ligand for 18F-labeling. Nevertheless, future in vivo metabolism studies are required

    Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A)

    No full text
    The cyclic nucleotide phosphodiesterase 2A is an intracellular enzyme which hydrolyzes the secondary messengers cAMP and cGMP and therefore plays an important role in signaling cascades. A high expression in distinct brain areas as well as in cancer cells makes PDE2A an interesting therapeutic and diagnostic target for neurodegenerative and neuropsychiatric diseases as well as for cancer. Aiming at specific imaging of this enzyme in the brain with positron emission tomography (PET), a new triazolopyridopyrazine-based derivative (11) was identified as a potent PDE2A inhibitor (IC50, PDE2A = 1.99 nM; IC50, PDE10A ~2000 nM) and has been radiofluorinated for biological evaluation. In vitro autoradiographic studies revealed that [18F]11 binds with high affinity and excellent specificity towards PDE2A in the rat brain. For the PDE2A-rich region nucleus caudate and putamen an apparent KD value of 0.24 nM and an apparent Bmax value of 16 pmol/mg protein were estimated. In vivo PET-MR studies in rats showed a moderate brain uptake of [18F]11 with a highest standardized uptake value (SUV) of 0.97. However, no considerable enrichment in PDE2A-specific regions in comparison to a reference region was detectable (SUVcaudate putamen = 0.51 vs. SUVcerebellum = 0.40 at 15 min p.i.). Furthermore, metabolism studies revealed a considerable uptake of radiometabolites of [18F]11 in the brain (66% parent fraction at 30 min p.i.). Altogether, despite the low specificity and the blood–brain barrier crossing of radiometabolites observed in vivo, [18F]11 is a valuable imaging probe for the in vitro investigation of PDE2A in the brain and has potential as a lead compound for further development of a PDE2A-specific PET ligand for neuroimaging

    Investigation of an 18F-labelled Imidazopyridotriazine for Molecular Imaging of Cyclic Nucleotide Phosphodiesterase 2A

    No full text
    Specific radioligands for in vivo visualization and quantification of cyclic nucleotide phosphodiesterase 2A (PDE2A) by positron emission tomography (PET) are increasingly gaining interest in brain research. Herein we describe the synthesis, the 18F-labelling as well as the biological evaluation of our latest PDE2A (radio-)ligand 9-(5-Butoxy-2-fluorophenyl)-2-(2-([18F])fluoroethoxy)-7-methylimidazo[5,1-c]pyrido[2,3-e][1,2,4]triazine (([18F])TA5). It is the most potent PDE2A ligand out of our series of imidazopyridotriazine-based derivatives so far (IC50 hPDE2A = 3.0 nM; IC50 hPDE10A > 1000 nM). Radiolabelling was performed in a one-step procedure starting from the corresponding tosylate precursor. In vitro autoradiography on rat and pig brain slices displayed a homogenous and non-specific binding of the radioligand. Investigation of stability in vivo by reversed-phase HPLC (RP-HPLC) and micellar liquid chromatography (MLC) analyses of plasma and brain samples obtained from mice revealed a high fraction of one main radiometabolite. Hence, we concluded that [18F]TA5 is not appropriate for molecular imaging of PDE2A neither in vitro nor in vivo. Our ongoing work is focusing on further structurally modified compounds with enhanced metabolic stability
    corecore