38 research outputs found

    Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail

    Get PDF
    29 p.-2 fig.Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells.Del Mazo lab was supported by a grant from MINECO (BFU2013-42164-R), Spain.Peer reviewe

    Especificidad de los alteradores endocrinos en la expresión génica durante el desarrollo

    Get PDF
    3 p.Los estudios de genes y los efectos de los alteradores endocrinos sobre la expresión génica llevados a cabo en el laboratorio de J. del Mazo han sido llevados a cabo en proyectos financiados parcialmente por: EC (QLK4-CT-2002-02403), CEFIC-LRI; MEDDTL (11-MRES-PNRPE-9-CVS -072) Francia, y CSIC (PIE 201020E016), España.Peer reviewe

    Pairing and recombination features during meiosis in Cebus paraguayanus (Primates: Platyrrhini)

    Get PDF
    Background: Among neotropical Primates, the Cai monkey Cebus paraguayanus (CPA) presents long, conserved chromosome syntenies with the human karyotype (HSA) as well as numerous C+ blocks in different chromosome pairs. In this study, immunofluorescence (IF) against two proteins of the Synaptonemal Complex (SC), namely REC8 and SYCP1, two recombination protein markers (RPA and MLH1), and one protein involved in the pachytene checkpoint machinery (BRCA1) was performed in CPA spermatocytes in order to analyze chromosome meiotic behavior in detail. Results: Although in the vast majority of pachytene cells all autosomes were paired and synapsed, in a small number of nuclei the heterochromatic C-positive terminal region of bivalent 11 remained unpaired. The analysis of 75 CPA cells at pachytene revealed a mean of 43.22 MLH1 foci per nucleus and 1.07 MLH1 foci in each CPA bivalent 11, always positioned in the region homologous to HSA chromosome 21. Conclusion: Our results suggest that C blocks undergo delayed pairing and synapsis, although they do not interfere with the general progress of pairing and synapsis

    Cohesin Removal along the Chromosome Arms during the First Meiotic Division Depends on a NEK1-PP1γ-WAPL Axis in the Mouse

    Get PDF
    SummaryMammalian NIMA-like kinase-1 (NEK1) is a dual-specificity kinase highly expressed in mouse germ cells during prophase I of meiosis. Loss of NEK1 induces retention of cohesin on chromosomes at meiotic prophase I. Timely deposition and removal of cohesin is essential for accurate chromosome segregation. Two processes regulate cohesin removal: a non-proteolytic mechanism involving WAPL, sororin, and PDS5B and direct cleavage by separase. Here, we demonstrate a role for NEK1 in the regulation of WAPL loading during meiotic prophase I, via an interaction between NEK1 and PDS5B. This regulation of WAPL by NEK1-PDS5B is mediated by protein phosphatase 1 gamma (PP1γ), which both interacts with and is a phosphotarget of NEK1. Taken together, our results reveal that NEK1 phosphorylates PP1γ, leading to the dephosphorylation of WAPL, which, in turn, results in its retention on chromosome cores to promote loss of cohesion at the end of prophase I in mammals

    A mutation in the endonuclease domain of mouse MLH3 reveals novel roles for MutLγ during crossover formation in meiotic prophase I

    Get PDF
    During meiotic prophase I, double-strand breaks (DSBs) initiate homologous recombination leading to non-crossovers (NCOs) and crossovers (COs). In mouse, 10% of DSBs are designated to become COs, primarily through a pathway dependent on the MLH1-MLH3 heterodimer (MutLγ). Mlh3 contains an endonuclease domain that is critical for resolving COs in yeast. We generated a mouse (Mlh3DN/DN) harboring a mutation within this conserved domain that is predicted to generate a protein that is catalytically inert. Mlh3DN/DN males, like fully null Mlh3-/- males, have no spermatozoa and are infertile, yet spermatocytes have grossly normal DSBs and synapsis events in early prophase I. Unlike Mlh3-/- males, mutation of the endonuclease domain within MLH3 permits normal loading and frequency of MutLγ in pachynema. However, key DSB repair factors (RAD51) and mediators of CO pathway choice (BLM helicase) persist into pachynema in Mlh3DN/DN males, indicating a temporal delay in repair events and revealing a mechanism by which alternative DSB repair pathways may be selected. While Mlh3DN/DN spermatocytes retain only 22% of wildtype chiasmata counts, this frequency is greater than observed in Mlh3-/- males (10%), suggesting that the allele may permit partial endonuclease activity, or that other pathways can generate COs from these MutLγ-defined repair intermediates in Mlh3DN/DN males. Double mutant mice homozygous for the Mlh3DN/DN and Mus81-/- mutations show losses in chiasmata close to those observed in Mlh3-/- males, indicating that the MUS81-EME1-regulated crossover pathway can only partially account for the increased residual chiasmata in Mlh3DN/DN spermatocytes. Our data demonstrate that mouse spermatocytes bearing the MLH1-MLH3DN/DN complex display the proper loading of factors essential for CO resolution (MutSγ, CDK2, HEI10, MutLγ). Despite these functions, mice bearing the Mlh3DN/DN allele show defects in the repair of meiotic recombination intermediates and a loss of most chiasmata

    The naked truth:a comprehensive clarification and classification of current 'myths' in naked mole-rat biology

    Get PDF
    The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions

    MicroRNA biogenesis and variability

    Get PDF
    41 p.-2 fig.MicroRNAs (miRNAs) are cell-endogenous small noncoding RNAs that, through RNA interference, are involved in the posttranscriptional regulation of mRNAs. The biogenesis and function of miRNAs entail multiple elements with different alternative pathways. These confer a high versatility of regulation and a high variability to generate different miRNAs and hence possess a broad potential to regulate gene expression. Here we review the different mechanisms, both canonical and noncanonical, that generate miRNAs in animals. The ' miRNome ' panorama enhances our knowledge regarding the fine regulation of gene expression and provides new insights concerning normal, as opposed to pathological, cell differentiation and development.Research on microRNAs carried out in del Mazo´s laboratory was supported by the following grants:, CEFIC-LRi,; MEDDTL (11-MRES-PNRPE-9-CVS-072), France; and CSIC (PIE 201020E016), Spain.Peer reviewe

    piRNA-IPdb: a PIWI-bound piRNAs database to mining NGS sncRNA data and beyond

    No full text
    8 p.-3 fig.-3 tab.Background: PIWI-interacting RNAs (piRNAs) are an abundant single-stranded type of small non-coding RNAs (sncRNAs), which initially were discovered in gonadal cells, with a role as defenders of genomic integrity in the germline, acting against the transposable elements. With a regular size range of 21-35 nt, piRNAs are associated with a PIWI-clade of Argonaute family proteins. The most widely accepted mechanisms of biogenesis for piRNAs involve the transcription of longer precursors of RNAs to be processed, by complexes of proteins, to functional size, preferentially accommodating uridine residues at the 5’ end and 3’ methylation to increase the stability of these molecules. piRNAs have also been detected in somatic cells, with diverse potential functions, indicating their high plasticity and pleiotropic activity. Discovered about two decades ago, piRNAs are a large and versatile type of sncRNA and that remain insufficiently identified and analyzed, through next-generation sequencing (NGS), to evaluate their processing, functions, and biogenesis in different cell types and during development. piRNAs’ distinction from other sncRNAs has led to controversial results and interpretation difficulties when using existing databases because of the heterogeneity of the criteria used in making the distinction.Description: We present “piRNA-IPdb”, a database based uniquely on datasets obtaining after the defining characteristic of piRNAs: those small RNAs bound to PIWI proteins. We selected and analyzed sequences from piRBase that exclusively cover the binding to PIWI. We pooled a total of 18,821,815 sequences from RNA-seq after immunoprecipitation that included the binding to any of the mouse PIWI proteins (MILI, MIWI, or MIWI2).Conclusions: In summary, we present the characteristics and potential use of piRNA-IPdb database for the analysis of bona fide piRNAs.This study was supported by the Agencia Estatal de Investigación; Ministerio de Ciencia, Innovación y Universidades (BFU2017-87095-R), Spain. Miguel A. Brieño-Enriquez was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development (R00HD090289) and the Magee Auxiliary Research Scholar (MARS) endowment.Peer reviewe

    Diversification of piRNAs expressed in PGCs and somatic cells during embryonic gonadal development

    No full text
    44 p.-8 fig.-3 tab.-4 fig. supl.-1 tab. supl.piRNAs are small non-coding RNAs known to play a main role in defence against transposable elements in germ cells. However, other potential functions, such as biogenesis and differences in somatic and germline expression of these regulatory elements, are not yet fully unravelled. Here, we analysed a variety of piRNA sequences detected in mouse male and female primordial germ cells (PGCs) and gonadal somatic cells at crucial stages during embryonic differentiation of germ cells (11.5–13.5 days post-coitum). NGS of sncRNA and bioinformatic characterization of piRNAs from PGCs and somatic cells, in addition to piRNAs associated with TEs, indicated functional diversification in both cell types. Differences in the proportion of the diverse types of piRNAs are detected between somatic and germline during development. However, the global diversified patterns of piRNA expression are mainly shared between germ and somatic cells, we identified piRNAs related with molecules involved in ribosome components and translation pathway, including piRNAs derived from rRNA (34%), tRNA (10%) and snoRNA (8%). piRNAs from both tRNA and snoRNA are mainly derived from 3ʹ and 5ʹ end regions. These connections between piRNAs and rRNAs, tRNAs or snoRNAs suggest important functions of specialized piRNAs in translation regulation during this window of gonadal development.This study was supported by the Agencia Estatal de Investigación; Ministerio de Ciencia, Innovación y Universidades (BFU2017-87095-R), Spain. ; ; M.A.B-E was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development [4R00HD090289-03] and the Magee Auxiliary Research Scholar (MARS).Peer reviewe

    Unraveling mitochondrial piRNAs in mouse embryonic gonadal cells

    No full text
    14 p.-4 fig.-1 tab.Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20–35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.This study was supported by the Agencia Estatal de Investigación; Ministerio de Ciencia, Innovación y Universidades (BFU2017-87095-R), Spain. Miguel A. Brieño-Enriquez was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development (R00HD090289) and the Magee Auxiliary Research Scholar (MARS) endowment.Peer reviewe
    corecore