3,605 research outputs found

    Evaluation of SIR-A space radar for geologic interpretation: United States, Panama, Colombia, and New Guinea

    Get PDF
    Comparisons between LANDSAT MSS imagery, and aircraft and space radar imagery from different geologic environments in the United States, Panama, Colombia, and New Guinea demonstrate the interdependence of radar system geometry and terrain configuration for optimum retrieval of geologic information. Illustrations suggest that in the case of space radars (SIR-A in particular), the ability to acquire multiple look-angle/look-direction radar images of a given area is more valuable for landform mapping than further improvements in spatial resolution. Radar look-angle is concluded to be one of the most important system parameters of a space radar designed to be used for geologic reconnaissance mapping. The optimum set of system parameters must be determined for imaging different classes of landform features and tailoring the look-angle to local topography

    An Allometric Analysis of Ontogenetic Changes (Variation) in the Cranial Morphology of Larvae of Hydaticus bimarginatus (Say) (Coleoptera: Dytiscidae: Dytiscinae)

    Get PDF
    Distortion coordinates (Cartesian transformations) are used to compare the ontogenetic allometry in cranial morphology of first, second, and third instars of Hydaticus bimarginatus (Say). The most significant difference in the dorsoventral view is the expansion of the posterior lateral margins. Cranial expansion is likely due to an increase in the mass of the adductor muscles which are responsible for closing the mandibles. The ontogenetic shift in head orientation to a more subprognathic position evident in the analysis of lateral silhouettes indicates that second and third instars may be adapted to feeding on substrate associated prey. These differences are thought to reflect possible changes in prey regimes and habitat preference occurring during larval development

    Designing avionics for lasers & optoelectronics

    Get PDF
    Unlike imagery-based Earth observation (EO) which has become very widely and cheaply available, gravity sensing EO has not yet emerged from its fundamental science roots. The challenge therefore is to develop gravity sensing instruments that can replicate the success of widespread imagery based EO. There are three main gravity sensing mechanisms under investigation: laser ranging (e.g., GRACE-FO [1]); atom interferometers, which measure gravitation perturbations to the wavefunctions of individual atoms; and ‘relativistic geodesy’ which uses atomic clocks to measure the gravitational curvature of spacetime. All three of these measurement systems use stabilised lasers as their main enabling technology. However traditional laboratory laser systems struggle to meet the robustness, reliability, or low size, weight, and power (SWaP) requirements for use in space. A demonstrator was build that adapted telecommunications industry COTS components, and software radio FPGA/DSP techniques, to develop a new all-fibre space-qualified stabilised laser systems for geodesy that have equivalent performance to laboratory systems. This instrument was used to develop a 780 nm laser system that is stabilised to the Rubidium D2 line - the stabilised laser most commonly required by the quantum and atomic sensing field achieving sufficiently high laser performance for the laser system to be immediately useful for quantum applications (stability: 1-10 kHz, accuracy: 1 MHz); and in an ultra-compact package that has the potential to be used in space (1 litre, 0.5 kg, 10 W) [2]. This paper reports on the current student work that advances the instrument further towards a flight payload – and key avionics design considerations for future researchers. This takes lessons learnt from the ESA ESEO software radio payload in utilising ECSS design practices [3] to fabricate a robust and modular avionics back-end board that can operate with numerous front-end laser or opto-electronics configurations for different quantum applications. The new board consists of a single PCB containing circuitry for TT&C reporting of power supply and voltage conditioning, the current and temperature electronics needed to control a diode laser on orbit, interfaces for photo detectors and opto-electronics, and a high-speed analogue- to-digital conversion network centred around a FPGA. As an example, digital signal processing performed frequency-modulated spectroscopy on a warm Rubidium vapour using an all-fibre optical arrangement

    Local lattice disorder in the geometrically-frustrated spin glass pyrochlore Y2Mo2O7

    Full text link
    The geometrically-frustrated spin glass Y2Mo2O7 has been considered widely to be crystallographically ordered with a unique nearest neighbor magnetic exchange interaction, J. To test this assertion, we present x-ray-absorption fine-structure results for the Mo and Y K edges as a function of temperature and compare them to results from a well-ordered pyrochlore, Tl2Mn2O7. We find that the Mo-Mo pair distances are significantly disordered at approximately right angles to the Y-Mo pairs. These results strongly suggest that lattice disorder nucleates the spin-glass phase in this material.Comment: 9 pages, 2 Postscript figures, Phys. Rev. B: Rapid, in pres

    Oral dosing for antenatal corticosteroids in the Rhesus macaque.

    Get PDF
    Antenatal corticosteroids (ACS) are standard of care for women at risk of preterm delivery, although choice of drug, dose or route have not been systematically evaluated. Further, ACS are infrequently used in low resource environments where most of the mortality from prematurity occurs. We report proof of principle experiments to test betamethasone-phosphate (Beta-P) or dexamethasone-phosphate (Dex-P) given orally in comparison to the clinical treatment with the intramuscular combination drug beta-phosphate plus beta-acetate in a Rhesus Macaque model. First, we performed pharmacokinetic studies in non-pregnant monkeys to compare blood levels of the steroids using oral dosing with Beta-P, Dex-P and an effective maternal intramuscular dose of the beta-acetate component of the clinical treatment. We then evaluated maternal and fetal blood steroid levels with limited fetal sampling under ultrasound guidance in pregnant macaques. We found that oral Beta is more slowly cleared from plasma than oral Dex. The blood levels of both drugs were lower in maternal plasma of pregnant than in non-pregnant macaques. Using the pharmacokinetic data, we treated groups of 6-8 pregnant monkeys with oral Beta-P, oral Dex-P, or the maternal intramuscular clinical treatment and saline controls and measured pressure-volume curves to assess corticosteroid effects on lung maturation at 5d. Oral Beta-P improved the pressure-volume curves similarly to the clinical treatment. Oral Dex-P gave more variable and nonsignificant responses. We then compared gene expression in the fetal lung, liver and hippocampus between oral Beta-P and the clinical treatment by RNA-sequencing. The transcriptomes were largely similar with small gene expression differences in the lung and liver, and no differences in the hippocampus between the groups. As proof of principle, ACS therapy can be effective using inexpensive and widely available oral drugs. Clinical dosing strategies must carefully consider the pharmacokinetics of oral Beta-P or Dex-P to minimize fetal exposure while achieving the desired treatment responses

    A Self-Consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD172555 System

    Full text link
    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10^19 kg of sub-micron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at approximately 6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4 percent over the last 27 years, from IRAS (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that 10^47 molecules of SiO vapor are needed to explain an emission feature at 8 um in the Spitzer IRS spectrum of HD 172555. We find that unless there are 10^48 atoms or 0.05 Earth masses of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the 8 um feature can be emission from solid SiO, which naturally occurs in submicron silicate "smokes" created by quickly condensing vaporized silicate.Comment: Accepted to the Astrophysical Journa
    corecore