1,368 research outputs found

    Dissipative Imitation Learning for Discrete Dynamic Output Feedback Control with Sparse Data Sets

    Full text link
    Imitation learning enables the synthesis of controllers for complex objectives and highly uncertain plant models. However, methods to provide stability guarantees to imitation learned controllers often rely on large amounts of data and/or known plant models. In this paper, we explore an input-output (IO) stability approach to dissipative imitation learning, which achieves stability with sparse data sets and with little known about the plant model. A closed-loop stable dynamic output feedback controller is learned using expert data, a coarse IO plant model, and a new constraint to enforce dissipativity on the learned controller. While the learning objective is nonconvex, iterative convex overbounding (ICO) and projected gradient descent (PGD) are explored as methods to successfully learn the controller. This new imitation learning method is applied to two unknown plants and compared to traditionally learned dynamic output feedback controller and neural network controller. With little knowledge of the plant model and a small data set, the dissipativity constrained learned controller achieves closed loop stability and successfully mimics the behavior of the expert controller, while other methods often fail to maintain stability and achieve good performance

    Cellular-level versus receptor-level response threshold hierarchies in T-Cell activation

    Get PDF
    Peptide-MHC (pMHC) ligand engagement by T-cell receptors (TCRs) elicits a variety of cellular responses, some of which require substantially more TCR-mediated stimulation than others. This threshold hierarchy could reside at the receptor level, where different response pathways branch off at different stages of the TCR/CD3 triggering cascade, or at the cellular level, where the cumulative TCR signal registered by the T-cell is compared to different threshold values. Alternatively, dual-level thresholds could exist. In this study, we show that the cellular hypothesis provides the most parsimonious explanation consistent with data obtained from an in-depth analysis of distinct functional responses elicited in a clonal T-cell system by a spectrum of biophysically defined altered peptide ligands across a range of concentrations. Further, we derive a mathematical model that describes how ligand density, affinity, and off-rate all affect signaling in distinct ways. However, under the kinetic regime prevailing in the experiments reported here, the TCR/pMHC class I (pMHCI) dissociation rate was found to be the main governing factor. The CD8 coreceptor modulated the TCR/pMHCI interaction and altered peptide ligand potency. Collectively, these findings elucidate the relationship between TCR/pMHCI kinetics and cellular function, thereby providing an integrated mechanistic understanding of T-cell response profiles

    The Development of Teaching Skills to Support Active Learning in University Science (ALIUS)

    Get PDF
    This paper describes an Australian Learning and Teaching Council funded project for which Learning Design is encompassed in the broadest sense. ALIUS (Active Learning In University Science) takes the design of learning back to the learning experiences created for students. ALIUS is not about designing a particular activity, or subject, or course, but rather the development of a method, or process, by which we have re-designed the way in which learning occurs in large university classrooms world wide

    Clonotypically similar hybrid ab T cell receptors can exhibit markedly different surface expression, antigen specificity and cross-reactivity

    Get PDF
    Emerging data indicate that particular major histocompatibility complex (MHC)-bound antigenic peptides can be recognized by identical or nearidentical ab T cell receptors (TCRs) in different individuals. To establish the functional relevance of this phenomenon, we artificially paired a and b chains from closely related TCRs specific for the human leucocyte antigen (HLA)-B*35:01-restricted HIV-1 negative regulatory factor (Nef)- derived epitope VY8 (VPLRPMTY, residues 74–81). Several hybrid TCRs generated in this manner failed to express at the cell surface, despite near homology with naturally isolated ab chain combinations. Moreover, a substantial proportion of those ab TCRs that did express lost specificity for the index VY8 peptide sequence. One such hybrid ab pair gained neo-variant specificity in the context of the VY8 backbone. Collectively, these data show that clonotypically similar TCRs can display profound differences in surface expression, antigen specificity and cross-reactivity with potential relevance for the control of mutable viruses

    Valence Fluctuations Revealed by Magnetic Field Scan: Comparison with Experiments in YbXCu_4 (X=In, Ag, Cd) and CeYIn_5 (Y=Ir, Rh)

    Full text link
    The mechanism of how critical end points of the first-order valence transitions (FOVT) are controlled by a magnetic field is discussed. We demonstrate that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field. This results explain the field dependence of the isostructural FOVT observed in Ce metal and YbInCu_4. Magnetic field scan can lead to reenter in a critical valence fluctuation region. Even in the intermediate-valence materials, the QCP is induced by applying a magnetic field, at which the magnetic susceptibility also diverges. The driving force of the field-induced QCP is shown to be a cooperative phenomenon of the Zeeman effect and the Kondo effect, which creates a distinct energy scale from the Kondo temperature. The key concept is that the closeness to the QCP of the FOVT is capital in understanding Ce- and Yb-based heavy fermions. It explains the peculiar magnetic and transport responses in CeYIn_5 (Y=Ir, Rh) and metamagnetic transition in YbXCu_4 for X=In as well as the sharp contrast between X=Ag and Cd.Comment: 14 pages, 9 figures, OPEN SELECT in J. Phys. Soc. Jp

    Mutational and Structural Analysis of KIR3DL1 Reveals a Lineage-Defining Allotypic Dimorphism That Impacts Both HLA and Peptide Sensitivity

    Get PDF
    Killer Ig-like receptors (KIRs) control the activation of human NK cells via interactions with peptide-laden HLAs. KIR3DL1 is a highly polymorphic inhibitory receptor that recognizes a diverse array of HLA molecules expressing the Bw4 epitope, a group with multiple polymorphisms incorporating variants within the Bw4 motif. Genetic studies suggest that KIR3DL1 variation has functional significance in several disease states, including HIV infection. However, owing to differences across KIR3DL1 allotypes, HLA-Bw4, and associated peptides, the mechanistic link with biological outcome remains unclear. In this study, we elucidated the impact of KIR3DL1 polymorphism on peptide-laden HLA recognition. Mutational analysis revealed that KIR residues involved in water-mediated contacts with the HLA-presented peptide influence peptide binding specificity. In particular, residue 282 (glutamate) in the D2 domain underpins the lack of tolerance of negatively charged C-terminal peptide residues. Allotypic KIR3DL1 variants, defined by neighboring residue 283, displayed differential sensitivities to HLA-bound peptide, including the variable HLA-B*57:01-restricted HIV-1 Gag-derived epitope TW10. Residue 283, which has undergone positive selection during the evolution of human KIRs, also played a central role in Bw4 subtype recognition by KIR3DL1. Collectively, our findings uncover a common molecular regulator that controls HLA and peptide discrimination without participating directly in peptide-laden HLA interactions. Furthermore, they provide insight into the mechanics of interaction and generate simple, easily assessed criteria for the definition of KIR3DL1 functional groupings that will be relevant in many clinical applications, including bone marrow transplantation

    Improved change detection with nearby hands

    Get PDF
    Recent studies have suggested altered visual processing for objects that are near the hands. We present three experiments that test whether an observer’s hands near the display facilitate change detection. While performing the task, observers placed both hands either near or away from the display. When their hands were near the display, change detection performance was more accurate and they held more items in visual short-term memory (experiment 1). Performance was equally improved for all regions across the entire display, suggesting a stronger attentional engagement over all visual stimuli regardless of their relative distances from the hands (experiment 2). Interestingly, when only one hand was placed near the display, we found no facilitation from the left hand and a weak facilitation from the right hand (experiment 3). Together, these data suggest that the right hand is the main source of facilitation, and both hands together produce a nonlinear boost in performance (superadditivity) that cannot be explained by either hand alone. In addition, the presence of the right hand biased observers to attend to the right hemifield first, resulting in a right-bias in change detection performance (experiments 2 and 3)

    Physical drivers facilitating a toxigenic cyanobacterial bloom in a major Great Lakes tributary

    Get PDF
    The Maumee River is the primary source for nutrients fueling seasonal Microcystis-dominated blooms in western Lake Erie\u27s open waters though such blooms in the river are infrequent. The river also serves as source water for multiple public water systems and a large food services facility in northwest Ohio. On 20 September 2017, an unprecedented bloom was reported in the Maumee River estuary within the Toledo metropolitan area, which triggered a recreational water advisory. Here we (1) explore physical drivers likely contributing to the bloom\u27s occurrence, and (2) describe the toxin concentration and bacterioplankton taxonomic composition. A historical analysis using 10-years of seasonal river discharge, water level, and local wind data identified two instances when high-retention conditions occurred over ≥ 10 d in the Maumee River estuary: in 2016 and during the 2017 bloom. Observation by remote sensing imagery supported the advection of cyanobacterial cells into the estuary from the lake during 2017 and the lack of an estuary bloom in 2016 due to a weak cyanobacterial bloom in the lake. A rapid-response survey during the 2017 bloom determined levels of the cyanotoxins, specifically microcystins, in excess of recreational contact limits at sites within the lower 20 km of the river while amplicon sequencing found these sites were dominated by Microcystis. These results highlight the need to broaden our understanding of physical drivers of cyanobacterial blooms within the interface between riverine and lacustrine systems, particularly as such blooms are expected to become more prominent in response to a changing climate
    corecore