281 research outputs found

    Spitzer observations of the Orion OB1 association: disk census in the low mass stars

    Full text link
    We present new Spitzer Space Telescope observations of two fields in the Orion OB1 association. We report here IRAC/MIPS observations for 115 confirmed members and 41 photometric candidates of the ~10 Myr 25 Orionis aggregate in the OB1a subassociation, and 106 confirmed members and 65 photometric candidates of the 5 Myr region located in the OB1b subassociation. The 25 Orionis aggregate shows a disk frequency of 6% while the field in the OB1b subassociation shows a disk frequency of 13%. Combining IRAC, MIPS and 2MASS photometry we place stars bearing disks in several classes: stars with optically thick disks (class II systems), stars with an inner transitional disks (transitional disk candidates) and stars with "evolved disks"; the last exhibit smaller IRAC/MIPS excesses than class II systems. In all, we identify 1 transitional disk candidate in the 25 Orionis aggregate and 3 in the OB1b field; this represents ~10% of the disk bearing stars, indicating that the transitional disk phase can be relatively fast. We find that the frequency of disks is a function of the stellar mass, suggesting a maximum around stars with spectral type M0. Comparing the infrared excess in the IRAC bands among several stellar groups we find that inner disk emission decays with stellar age, showing a correlation with the respective disk frequencies. The disk emission at the IRAC and MIPS bands in several stellar groups indicates that disk dissipation takes place faster in the inner region of the disks. Comparison with models of irradiated accretion disks, computed with several degrees of settling, suggests that the decrease in the overall accretion rate observed in young stellar groups is not sufficient to explain the weak disk emission observed in the IRAC bands for disk bearing stars with ages 5 Myr or older.Comment: Accepted in the Astrophysical Journa

    New Low-Mass Members of the Taurus Star-Forming Region

    Full text link
    Briceno et al. recently used optical imaging, data from the Two-Micron All-Sky Survey (2MASS), and follow-up spectroscopy to search for young low-mass stars and brown dwarfs in 8 square degrees of the Taurus star-forming region. By the end of that study, there remained candidate members of Taurus that lacked the spectroscopic observations needed to measure spectral types and determine membership. In this work, we have obtained spectroscopy of the 22 candidates that have A_V<=8, from which we find six new Taurus members with spectral types of M2.75 through M9. The new M9 source has the second latest spectral type of the known members of Taurus (~0.02 M_sun). Its spectrum contains extremely strong emission in H_alpha (W~950 A) as well as emission in He I 6678 A and the Ca II IR triplet. This is the least massive object known to exhibit emission in He I and Ca II, which together with the strong H_alpha are suggestive of intense accretion.Comment: to be published in The Astrophysical Journal, 13 pages, 6 figures, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm

    Photometric Accretion Signatures Near the Substellar Boundary

    Full text link
    Multi-epoch imaging of the Orion equatorial region by the Sloan Digital Sky Survey has revealed that significant variability in the blue continuum persists into the late-M spectral types, indicating that magnetospheric accretion processes occur below the substellar boundary in the Orion OB1 association. We investigate the strength of the accretion-related continuum veiling by comparing the reddening-invariant colors of the most highly variable stars against those of main sequence M dwarfs and evolutionary models. A gradual decrease in the g band veiling is seen for the cooler and less massive members, as expected for a declining accretion rate with decreasing mass. We also see evidence that the temperature of the accretion shock decreases in the very low mass regime, reflecting a reduction in the energy flux carried by the accretion columns. We find that the near-IR excess attributed to circumstellar disk thermal emission drops rapidly for spectral types later than M4. This is likely due to the decrease in color contrast between the disk and the cooler stellar photosphere. Since accretion, which requires a substantial stellar magnetic field and the presence of a circumstellar disk, is inferred for masses down to 0.05 Msol we surmise that brown dwarfs and low mass stars share a common mode of formation.Comment: 37 pages, 14 figures, accepted by A

    Spitzer Space Telescope study of disks in the young σ\sigma Orionis cluster

    Full text link
    We report new Spitzer Space Telescope observations from the IRAC and MIPS instruments of the young (~ 3 Myr) sigma Orionis cluster. We identify 336 stars as members of the cluster using optical and near-infrared color magnitude diagrams. Using the spectral energy distribution (SED) slopes in the IRAC spectral range, we place objects in several classes: non-excess stars, stars with optically thick disks(like classical T Tauri stars), class I (protostellar) candidates, and stars with ``evolved disks''; the last exhibit smaller IRAC excesses than optically thick disk systems. In general, this classification agrees with the location expected in IRAC-MIPS color-color diagrams for these objects. We find that the evolved disk systems are mostly a combination of objects with optically thick but non-flared disks, suggesting grain growth and/or settling, and transition disks, systems in which the inner disk is partially or fully cleared of small dust. In all, we identify 7 transition disk candidates and 3 possible debris disk systems. As in other young stellar populations, the fraction of disks depends on the stellar mass, ranging from ~10% for stars in the Herbig Ae/Be mass range (>2 msun) to ~35% in the T Tauri mass range (1-0.1 msun). We find that the disk fraction does not decrease significantly toward the brown dwarf candidates (<0.1 msun). The IRAC infrared excesses found in stellar clusters and associations with and without central high mass stars are similar, suggesting that external photoevaporation is not very important in many clusters. Finally, we find no correlation between the X-ray luminosity and the disk infrared excess, suggesting that the X-rays are not strongly affected by disk accretion.Comment: 44pages, 17 figures. Sent to Ap

    The Mass Function of Newly Formed Stars (Review)

    Full text link
    The topic of the stellar "original mass function" has a nearly 50 year history,dating to the publication in 1955 of Salpeter's seminal paper. In this review I discuss the many more recent results that have emerged on the initial mass function (IMF), as it is now called, from studies over the last decade of resolved populations in star forming regions and young open clusters.Comment: 9 pages, 1 figure; to appear in "The Dense Instellar Medium in Galaxies -- 4'th Cologne-Bonn-Zermatt-Symposium" editted by S. Pfalzner, C. Kramer, C. Straubmeier and A. Heithausen, Springer-Verlag (2004

    Implications of the Molybdenum Coordination Environment in MFI Zeolites on Methane Dehydroaromatisation Performance

    Get PDF
    The structure and activity of Mo/Silicalite‐1 (MFI, Si/Al=∞) were compared to Mo/H‐ZSM‐5 (MFI, Si/Al=15), a widely studied catalyst for methane dehydroaromatisation (MDA). The anchoring mode of Mo was evaluated by in situ X‐ray absorption spectroscopy (XAS) and density functional theory (DFT). The results showed that in Mo/Silicalite‐1, calcination leads to dispersion of MoO3 precursor into tetrahedral Mo‐oxo species in close proximity to the microporous framework. A weaker interaction of the Mo‐oxo species with the Silicalite‐1 was determined by XAS and DFT. While both catalysts are active for MDA, Mo/Silicalite‐1 undergoes rapid deactivation which was attributed to a faster sintering of Mo species leading to the accumulation of carbon deposits on the zeolite outer surface. The results shed light onto the nature of the Mo structure(s) while evidencing the importance of framework Al in stabilising active Mo species under MDA conditions

    Understanding the Deactivation Phenomena of Small-Pore Mo/H-SSZ-13 during Methane Dehydroaromatisation

    Get PDF
    Small pore zeolites have shown great potential in a number of catalytic reactions. While Mo-containing medium pore zeolites have been widely studied for methane dehydroaromatisation (MDA), the use of small pore supports has drawn limited attention due to the fast deactivation of the catalyst. This work investigates the structure of the small pore Mo/H-SSZ-13 during catalyst preparation and reaction by operando X-ray absorption spectroscopy (XAS), in situ synchrotron powder diffraction (SPD), and electron microscopy; then, the results are compared with the medium pore Mo/H-ZSM-5. While SPD suggests that during catalyst preparation, part of the MoOx anchors inside the pores, Mo dispersion and subsequent ion exchange was less effective in the small pore catalyst, resulting in the formation of mesopores and Al2(MOO4)3 particles. Unlike Mo/H-ZSM-5, part of the Mo species in Mo/H-SSZ-13 undergoes full reduction to Mo0 during MDA, whereas characterisation of the spent catalyst indicates that differences also exist in the nature of the formed carbon deposits. Hence, the different Mo speciation and the low performance on small pore zeolites can be attributed to mesopores formation during calcination and the ineffective ion exchange into well dispersed Mo-oxo sites. The results open the scope for the optimisation of synthetic routes to explore the potential of small pore topologies

    A different look at the spin state of Co3+^{3+} ions in CoO5_{5} pyramidal coordination

    Full text link
    Using soft-x-ray absorption spectroscopy at the Co-L2,3L_{2,3} and O-KK edges, we demonstrate that the Co3+^{3+} ions with the CoO5_{5} pyramidal coordination in the layered Sr2_2CoO3_3Cl compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites, and calls for a re-examination of the modeling for the complex and fascinating properties of these new materials.Comment: 5 pages 3 figure

    Accretion in Young Stellar/Substellar Objects

    Full text link
    We present a study of accretion in a sample of 45 young, low mass objects in a variety of star forming regions and young associations, about half of which are likely substellar. Based primarily on the presence of broad, asymmetric Halpha emission, we have identified 13 objects (~30% of our sample) which are strong candidates for ongoing accretion. At least 3 of these are substellar. We do not detect significant continuum veiling in most of the accretors with late spectral types (M5-M7). Accretion shock models show that lack of measurable veiling allows us to place an upper limit to the mass accretion rates of <~ 10^{-10} Msun/yr. Using magnetospheric accretion models with appropriate (sub)stellar parameters, we can successfully explain the accretor Halpha emission line profiles, and derive quantitative estimates of accretion rates in the range 10^{-12} < Mdot < 10^{-9} Msun/yr. There is a clear trend of decreasing accretion rate with stellar mass, with mean accretion rates declining by 3-4 orders of magnitude over ~ 1 - 0.05 Msun.Comment: 38 pages, including 8 figures and 6 tables, accepted by Ap

    Desperately seeking niches: Grassroots innovations and niche development in the community currency field

    Get PDF
    The sustainability transitions literature seeks to explain the conditions under which technological innovations can diffuse and disrupt existing socio-technical systems through the successful scaling up of experimental ‘niches’; but recent research on ‘grassroots innovations’ argues that civil society is a promising but under-researched site of innovation for sustainability, albeit one with very different characteristics to the market-based innovation normally considered in the literature. This paper aims to address that research gap by exploring the relevance of niche development theories in a civil society context. To do this, we examine a growing grassroots innovation – the international field of community currencies – which comprises a range of new socio-technical configurations of systems of exchange which have emerged from civil society over the last 30 years, intended to provide more environmentally and socially sustainable forms of money and finance. We draw on new empirical research from an international study of these initiatives comprising primary and secondary data and documentary sources, elite interviews and participant observation in the field. We describe the global diffusion of community currencies, and then conduct a niche analysis to evaluate the utility of niche theories for explaining the development of the community currency movement. We find that some niche-building processes identified in the existing literature are relevant in a grassroots context: the importance of building networks, managing expectations and the significance of external ‘landscape’ pressures, particularly at the level of national-type. However, our findings suggest that existing theories do not fully capture the complexity of this type of innovation: we find a diverse field addressing a range of societal systems (money, welfare, education, health, consumerism), and showing increasing fragmentation (as opposed to consolidation and standardisation); furthermore, there is little evidence of formalised learning taking place but this has not hampered movement growth. We conclude that grassroots innovations develop and diffuse in quite different ways to conventional innovations, and that niche theories require adaptation to the civil society context
    • 

    corecore