11 research outputs found

    An M dwarf accompanied by a close-in giant orbiter with SPECULOOS

    Get PDF
    In the last decade, a dozen close-in giant planets have been discovered orbiting stars with spectral types ranging from M0 to M4, a mystery since known formation pathways do not predict the existence of such systems. Here, we confirm TOI-4860 b, a Jupiter-sized planet orbiting an M4.5 host, a star at the transition between fully and partially convective interiors. First identified with TESS data, we validate the transiting companion's planetary nature through multicolour photometry from the TRAPPIST-South/North, SPECULOOS, and MuSCAT3 facilities. Our analysis yields a radius of 0.76±0.02 RJup0.76 \pm 0.02~ \rm R_{Jup} for the planet, a mass of 0.34 M0.34~\rm M_\odot for the star, and an orbital period of 1.52 d. Using the newly commissioned SPIRIT InGaAs camera at the SPECULOOS-South Observatory, we collect infrared photometry in zYJ that spans the time of secondary eclipse. These observations do not detect a secondary eclipse, placing an upper limit on the brightness of the companion. The planetary nature of the companion is further confirmed through high-resolution spectroscopy obtained with the IRD spectrograph at Subaru Telescope, from which we measure a mass of 0.67±0.14 MJup0.67 \pm 0.14~\rm M_{Jup} . Based on its overall density, TOI-4860 b appears to be rich in heavy elements, like its host star.Comment: Accepted for publication in MNRAS Letter

    WASP-193b: An extremely low-density super-Neptune

    Get PDF
    Gas giants transiting bright nearby stars are stepping stones for our understanding of planetary system formation and evolution mechanisms. This paper presents a particularly interesting new specimen of this kind of exoplanet discovered by the WASP-South transit survey, WASP-193b. This planet completes an orbit around its Vmag = 12.2 F9 main-sequence host star every 6.25 d. Our analyses found that WASP-193b has a mass of Mp = 0.139 +/- 0.029 M_Jup and a radius of Rp = 1.464 +/- 0.058 R_ Jup, translating into an extremely low density of rhop = 0.059 +\- 0.014 g/cm^3. The planet was confirmed photometrically by the 0.6-m TRAPPIST-South, the 1.0-m SPECULOOS-South telescopes, and the TESS mission, and spectroscopically by the ESO-3.6-m/HARPS and Euler-1.2-m/CORALIE spectrographs. The combination of its large transit depth (dF~1.4 %), its extremely-low density, its high-equilibrium temperature (Teq = 1254 +/- 31 K), and the infrared brightness of its host star (magnitude Kmag=10.7) makes WASP-193b an exquisite target for characterization by transmission spectroscopy (transmission spectroscopy metric: TSM ~ 600). One single JWST transit observation would yield detailed insights into its atmospheric properties and planetary mass, within ~0.1 dex and ~1% (vs ~20% currently with radial velocity data) respectively

    Kepler-18b, c, and d: a system of three planets confirmed by transit timing variations, light curve validation, Warm-Spitzer photometry, and radial velocity measurements

    Get PDF
    We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M ⊙, a radius of 1.1 R ⊙, an effective temperature of 5345K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet 'b' is a 'super-Earth' with a mass of 6.9 ± 3.4 M ⊕, a radius of 2.00 ± 0.10 R ⊕, an' a mean density of 4.9 ± 2.4gcm3. The two outer planets 'c' and 'd' are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M ⊕, a radius of 5.49 ± 0.26 R ⊕, and a mean density of 0.59 0.07gcm 3, while Kepler-18d has a mass of 16.4 ± 1.4 M ⊕, a radius of 6.98 ± 0.33 R ⊕ and a mean density of 0.27 ± 0.03gcm3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs

    The stable climate of KELT-9b

    No full text
    Even among the most irradiated gas giants, so-called ultra-hot Jupiters, KELT-9b stands out as the hottest planet thus far discovered with a dayside temperature of over 4500 K. At these extreme irradiation levels, we expect an increase in heat redistribution efficiency and a low Bond albedo owed to an extended atmosphere with molecular hydrogen dissociation occurring on the planetary dayside. We present new photometric observations of the KELT-9 system throughout 4 full orbits and 9 eparate occultations obtained by the 30 cm space telescope CHEOPS. The CHEOPS bandpass, located at optical wavelengths, captures the peak of the thermal emission spectrum of KELT-9b. In this work we simultaneously analyse CHEOPS phase curves along with public phase curves from TESS and Spitzer to infer joint constraints on the phase curve variation, gravity-darkened transits, and occultation depth in three bandpasses, as well as derive 2D temperature maps of the atmosphere at three different depths. We find a day-night heat redistribution efficiency of ∼0.3 which confirms expectations of enhanced energy transfer to the planetary nightside due to dissociation and ecombination of molecular hydrogen. We also calculate a Bond albedo consistent with zero. We find no evidence of variability of the brightness temperature of the planet, excluding variability greater than 1% (1σ).ISSN:0004-6361ISSN:1432-074

    Kepler-18b, c, and d : A system of three planets confirmed by transit timing variations, light curve validation, Warm-Spitzer photometry, and radial velocity measurements

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyWe report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M , a radius of 1.1 R , an effective temperature of 5345K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M , a radius of 2.00 ± 0.10 R , and a mean density of 4.9 ± 2.4gcm. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M , a radius of 5.49 ± 0.26 R , and a mean density of 0.59 0.07gcm , while Kepler-18d has a mass of 16.4 ± 1.4 M , a radius of 6.98 ± 0.33 R and a mean density of 0.27 ± 0.03gcm. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs.Peer reviewedFinal Accepted Versio

    ESA Voyage 2050 White Paper: Detecting life outside our solar system with a large high-contrast-imaging mission

    No full text
    White paper for ESA Voyage 2050In this white paper, we recommend the European Space Agency plays a proactive role in developing a global collaborative effort to construct a large high-contrast imaging space telescope, e.g. as currently under study by NASA. Such a mission will be needed to characterize a sizable sample of temperate Earth-like planets in the habitable zones of nearby Sun-like stars and to search for extraterrestrial biological activity. We provide an overview of relevant European expertise, and advocate ESA to start a technology development program towards detecting life outside the Solar system

    ESA Voyage 2050 White Paper: Detecting life outside our solar system with a large high-contrast-imaging mission

    No full text
    White paper for ESA Voyage 2050In this white paper, we recommend the European Space Agency plays a proactive role in developing a global collaborative effort to construct a large high-contrast imaging space telescope, e.g. as currently under study by NASA. Such a mission will be needed to characterize a sizable sample of temperate Earth-like planets in the habitable zones of nearby Sun-like stars and to search for extraterrestrial biological activity. We provide an overview of relevant European expertise, and advocate ESA to start a technology development program towards detecting life outside the Solar system
    corecore