319 research outputs found

    A Generalized Nash-Cournot Model for the North-Western European Natural Gas Markets with a Fuel SubstitutionDemand Function: The GaMMES Model

    Get PDF
    This article presents a dynamic Generalized Nash-Cournot model to describe the evolution of the natural gas markets. The aim of this work is to provide a theoretical framework that would allow us to analyze future infrastructure and policy developments, while trying to answer some of the main criticisms addressed to Cournot-based models of natural gas markets. The major gas chain players are depicted including: producers, consumers, storage and pipeline operators, as well as intermediate local traders. Our economic structure description takes into account market power and the demand representation tries to capture the possible fuel substitution that can be made between the consumption of oil, coal and natural gas in the overall fossil energy consumption. We also take into account the long-term aspects inherent to some markets, in an endogenous way. This particularity of our description makes the model a Generalized Nash Equilibrium problem that needs to be solved using specialized mathematical techniques. Our model has been applied to represent the European natural gas market and forecast, until 2030, after a calibration process, consumption, prices, production and natural gas dependence. A comparison between our model, a more standard one that does not take into account energy substitution, and the European Commission natural gas forecasts is carried out to analyze our results. Finally, in order to illustrate the possible use of fuel substitution, we studied the evolution of the natural gas price as compared to the coal and oil prices. This paper mostly focuses on the model description.Energy markets modeling, Game theory, Generalized Nash-Cournot equilibria, Quasi-Variational Inequality

    A comprehensive review on energy management strategies for electric vehicles considering degradation using aging models

    Get PDF
    Electrification in the transportation industry is becoming more important to face global warming and replace fossil fuels in the future. Among the available energy sources Li-ion battery and proton exchange membrane fuel cell (PEMFC) are the most promising energy sources. Therefore, employing them in fuel cell hybrid electric vehicles (FCHEVs) to combine their advantages is one of the favorable solutions. However, they still face a major challenge residing in their aging that cause the drop of system performance. On one hand, the degradation is the result of the interaction between several aging mechanisms that react differently with various operating conditions. On the other hand, a hybrid system requires an essential energy management strategy (EMS) for fuel economy and optimal power share. At the end, this EMS has an important impact on the lifetime of sources in term of reducing or favorizing the degradation. Therefore, it is important to consider the degradation in the objectives of the designed EMS. Since the degradation is usually neglected when designing an EMS, this paper tends to review the possible methods for designing a health-conscious EMS. Hence, this paper presents a summary of the main fuel cell (FC) and Li-ion battery aging mechanisms as well as the useful degradation models for state of health estimation. In addition, the existing works that consider the degradation of on-board energy sources in their approaches for increasing their durability are classified and analysed. Remaining challenges are detailed along with a discussion and outlooks about current and future trends of health-conscious EMS. Autho

    Can current national surveillance systems in England and Wales monitor sexual transmission of hepatitis C among HIV-infected men who have sex with men?

    Get PDF
    BACKGROUND: Recent reports suggest an increase in sexually-transmitted hepatitis C infection among HIV-infected men who have sex with men (MSM) in European cities. We investigated whether current national surveillance systems in England and Wales (E&W) are able to monitor sexual transmission of hepatitis C infection among HIV-infected MSM. METHODS: Routine laboratory reports of hepatitis C diagnoses and data from sentinel hepatitis C testing surveillance were matched to HIV diagnosis reports to determine: (i) the number of MSM diagnosed with HIV and hepatitis C (1996–2003); (ii) the number of HIV-diagnosed MSM tested for hepatitis C and found to be positive at sentinel sites (2003). RESULTS: (i) Between 1996–2003, 38,027 hepatitis C diagnoses were reported; 25,938 (68%) were eligible for matching with HIV diagnoses. Thirty-one men (four in London) had both a HIV and hepatitis C diagnosis where the only risk was sex with another man. Numbers of "co-diagnosed" MSM increased from 0 in 1996 to 14 in 2003. The majority of MSM (22/31) tested hepatitis C positive after HIV diagnosis. (ii) Of 78,058 test results from sentinel hepatitis C testing sites in 2003, 67,712 (87%) were eligible for matching with HIV diagnoses. We identified 242 HIV-diagnosed MSM who did not inject drugs who tested for hepatitis C in 2003; 11 (4.5%) tested hepatitis C positive (95%CI: 2.3%–8.0%). Applying this percentage to all MSM seen for HIV-related care in E&W in 2003, an estimated 680 MSM living with diagnosed HIV would have tested positive for sexually-transmitted hepatitis C (95%CI: 346–1208). CONCLUSION: Matching routine laboratory reports of hepatitis C diagnoses with HIV diagnoses only identified 31 HIV infected MSM with sexually-transmitted hepatitis C infection. Clinical studies suggest that this is an underestimate. On the other hand, matching sentinel surveillance reports with HIV diagnoses revealed that in E&W in 2003 nearly 5% of HIV-diagnosed MSM tested hepatitis C positive where the only risk was sex with another man. Reports of sexually-transmitted hepatitis C infection were not confined to London. Enhanced surveillance is needed to monitor sexually-transmitted hepatitis C among HIV-infected MSM in E&W

    New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    Get PDF
    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved

    Biorefining of wheat straw:accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment–severity equation

    Get PDF
    BACKGROUND: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. RESULTS: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. CONCLUSION: Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass
    corecore