2,767 research outputs found

    Secondary Electron Yield Measurements of Carbon Nanotube Forests: Dependence on Morphology and Substrate

    Get PDF
    Total, secondary, and backscatter electron yield data were taken with beam energies between 15 eV and 30 keV, in conjunction with energy emission data, to determine the extent of suppression of yield caused by carbon nanotube (CNT) forest coatings on substrates. CNT forests can potentially lower substrate yield due to both its inherently low-yield, low-atomic number (Z) carbon composition, and its bundled, high-aspect ratio structure. Rough surfaces, and in particular, surfaces with deep high-aspect-ratio voids, can suppress yields, as the electrons emitted from lower lying surfaces are recaptured by surface protrusions rather than escaping the near-surface region. Yields of multilayered materials can be modeled essentially serially as a combination of the constituents. However, it is shown that suppression of yields due to CNT forest morphology is more significant than simple predicted contributions of homogeneous layered components. This effect is found to be most pronounced at low energies, where the incident electrons interact preferentially with the CNTs. CNT forests between 20 and 50 μm tall were grown on a thick silicon substrate capped with a 3-nm diffusion barrier of evaporated aluminum using a wet injection chemical vapor deposition (CVD) method. Yields of an annealed substrate and constituent bulk materials were also investigated. At incident electron energies above ~1200 eV, the substrate secondary yield dominated those of the CNT forests, as incident electrons penetrated through the low-density, low-Z CNT forests, and backscattered from the higher-Z substrate. At lower energies \u3c1200 \u3eeV, the CNT forests substantially reduced the overall yields of the substrate, and for \u3c500 eV CNT forest yields were \u3c1, well below the already low yields of bulk graphite. This suppressed yield at low energies is attributed to the porosity and preferred vertical alignment of the CNT forest. The yield’s dependence on the height and density of the CNT forest is also discussed

    Influence of Vibrationally-Induced Structural Changes on Carbon Nanotube Forests Suppression of Electron Yield

    Get PDF
    Carbon nanotube (CNT) forest coatings have been found to lower electron yield from material surfaces. The suppressed yields have been attributed to both the lower inherent yields of low-atomic number carbon and the enhanced electron recapture resulting from the morphology of the carbon layer. To explore the relative contributions of these two causes of yield suppression, tests have been made on CNT forest-coated conducting substrate samples subjected to vibrationally-induced changes of the coating structure. The extent of vibrationally-induced structural changes—due, for example, to shear-force conditions during space-vehicle transit—are of interest, as CNT have been a frequent topic of scientific curiosity and space applications due to their high tensile strength, high aspect ratio geometry, and unique electromagnetic characteristics. Their use has also been beneficial for sensor equipment, both terrestrial and space-faring, due to their extremely low photon and electron reflectivity

    Suppresion of Electron Yield With Carbon Nanotube Forests: A Case Study

    Get PDF
    Electron emission of carbon nanotube (CNT) forests grown on silicon substrates was measured to investigate possible electron yield suppression due to the composition and morphology of CNT forests. CNT forests are vertically-oriented tubular formations of graphitic carbon grown on a substrate; these have been widely investigated for their extreme properties in optical, electrical, and mechanical aspects of physics and material sciences. CNT coatings are good candidates for yield reduction, in analogy with the near-ideal blackbody optical properties of CNT forests. Carbon with its low atomic number has an inherent low yield due to its low density of bulk electrons. Furthermore, the large aspect ratio of this vertically-aligned CNT allows for easy penetration of the high energy incident electrons, but enhanced recapture of lower-energy secondary electrons due to their wider angular distribution of emission. Total (TEY), secondary (SEY) and backscattered (BSEY) yield curves using 15 eV to 30 keV electron beams, along with energy emission spectra, were acquired for three CNT forest samples to determine the extent of yield suppression of the substrate due to the CNT forests [Wood, 2018]

    RNA polymerase V targets transcriptional silencing components to promoters of protein‐coding genes

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/1/tpj12034-sup-0010-TableS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/2/tpj12034-sup-0006-FigureS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/3/tpj12034-sup-0007-FigureS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/4/tpj12034-sup-0003-FigureS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/5/tpj12034-sup-0008-FigureS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/6/tpj12034-sup-0005-FigureS3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/7/tpj12034-sup-0004-FigureS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/8/tpj12034-sup-0009-FigureS7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/9/tpj12034.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/96338/10/tpj12034-sup-0002-MethodsS1.pd

    Products of Vitamin D3 or 7-Dehydrocholesterol Metabolism by Cytochrome P450scc Show Anti-Leukemia Effects, Having Low or Absent Calcemic Activity

    Get PDF
    BACKGROUND. Cytochrome P450scc metabolizes vitamin D3 to 20-hydroxyvitamin D3 (20(OH)D3) and 20,23(OH)2D3, as well as 1-hydroxyvitamin D3 to 1a,20-dihydroxyvitamin D3 (1,20(OH)2D3). It also cleaves the side chain of 7-dehydrocholesterol producing 7-dehydropregnenolone (7DHP), which can be transformed to 20(OH)7DHP. UVB induces transformation of the steroidal 5,7-dienes to pregnacalciferol (pD) and a lumisterol-like compounds (pL). METHODS AND FINDINGS. To define the biological significance of these P450scc-initiated pathways, we tested the effects of their 5,7-diene precursors and secosteroidal products on leukemia cell differentiation and proliferation in comparison to 1a,25-dihydroxyvitamin D3 (1,25(OH)2D3). These secosteroids inhibited proliferation and induced erythroid differentiation of K562 human chronic myeloid and MEL mouse leukemia cells with 20(OH)D3 and 20,23(OH)2D3 being either equipotent or slightly less potent than 1,25(OH)2D3, while 1,20(OH)2D3, pD and pL compounds were slightly or moderately less potent. The compounds also inhibited proliferation and induced monocytic differentiation of HL-60 promyelocytic and U937 promonocytic human leukemia cells. Among them 1,25(OH)2D3 was the most potent, 20(OH)D3, 20,23(OH)2D3 and 1,20(OH)2D3 were less active, and pD and pL compounds were the least potent. Since it had been previously proven that secosteroids without the side chain (pD) have no effect on systemic calcium levels we performed additional testing in rats and found that 20(OH)D3 had no calcemic activity at concentration as high as 1 µg/kg, whereas, 1,20(OH)2D3 was slightly to moderately calcemic and 1,25(OH)2D3 had strong calcemic activity. CONCLUSIONS. We identified novel secosteroids that are excellent candidates for anti-leukemia therapy with 20(OH)D3 deserving special attention because of its relatively high potency and lack of calcemic activity.National Institutes of Health (R01A052190

    Fish Colonization of a Newly Deployed Vessel-reef off Southeast Florida: Preliminary Results

    Get PDF
    Fish colonization on the Ebenezer II, a 25.5m merchant marine vessel, was studied from May 2002 - July 2003. The ship was scuttled in May 2002 off Broward County, Florida at a depth of 21m and was censused 10 times during the study period using a modified Bohnsack and Bannerot visual census method. Adjacent natural reefs and the Mcallister, a nearby, 30m tugboat deployed in June 1998, were censused during the same period. Distinct changes in the fish assemblage on the Ebenezer II were observed throughout the sample period. A pioneer assemblage was observed during the first three months, characterized by the settlement of juvenile fishes «5 cm). Subsequently, numbers of juveniles decreased either through emigration, predation or growth. Resident species made up 52.5% of the total abundance but transient fish species made up 78% of the total fish biomass during the study period. Surprisingly, attraction of adult fish from both natural reefs and the Mcallister was not a major factor in assemblage fonnation. The primary adult fishes attracted to the Ebenezer II were herbivores. These fishes steadily increased in abundance throughout the study period, presumably due to increased food availability as benthic algal communities developed. A similar trend of increasing herbivores with increasing soak time was observed on the Spiegel Grove, a 153m vessel-reef sunk off Key Largo in May 2002. The fish assemblages on the artificial reefs were more similar to each other than to natural reefs. Vessel-reefs had sixty species in common, while the Ebenezer II only had thirty-nine species in common with natural reefs. Several species common to vessel-reefs were absent or rare on nearby natural reefs. This may indicate that vessel-reefs are providing early juvenile and adult habitat that is not available on natural reefs

    Panama Bridge Project

    Get PDF
    The Panama Bridge project has partnered with Rio Missions Panama to design a bridge for the village of La Gigi, Panama. The mountain community of La Gigi experiences heavy rainfall during the rainy seasons. A stream runs along the community, restricting their access to schools, employment options, and other communities. While passable during dry seasons, the stream floods and becomes impassable after heavy rains. The residents are effectively cut off from their livelihoods, church, health services, and other communities during this time. To accommodate this need, the Panama Bridge Team has spent the last two academic years designing a 90 foot aluminum truss bridge. The design includes a unique construction strategy to deal with challenging site constraints.https://mosaic.messiah.edu/engr2021/1011/thumbnail.jp

    Insulin-induced remission in new-onset NOD mice is maintained by the PD-1–PD-L1 pathway

    Get PDF
    The past decade has seen a significant increase in the number of potentially tolerogenic therapies for treatment of new-onset diabetes. However, most treatments are antigen nonspecific, and the mechanism for the maintenance of long-term tolerance remains unclear. In this study, we developed an antigen-specific therapy, insulin-coupled antigen-presenting cells, to treat diabetes in nonobese diabetic mice after disease onset. Using this approach, we demonstrate disease remission, inhibition of pathogenic T cell proliferation, decreased cytokine production, and induction of anergy. Moreover, we show that robust long-term tolerance depends on the programmed death 1 (PD-1)–programmed death ligand (PD-L)1 pathway, not the distinct cytotoxic T lymphocyte–associated antigen 4 pathway. Anti–PD-1 and anti–PD-L1, but not anti–PD-L2, reversed tolerance weeks after tolerogenic therapy by promoting antigen-specific T cell proliferation and inflammatory cytokine production directly in infiltrated tissues. PD-1–PD-L1 blockade did not limit T regulatory cell activity, suggesting direct effects on pathogenic T cells. Finally, we describe a critical role for PD-1–PD-L1 in another powerful immunotherapy model using anti-CD3, suggesting that PD-1–PD-L1 interactions form part of a common pathway to selectively maintain tolerance within the target tissues

    Geometric control of vascular networks to enhance engineered tissue integration and function

    Get PDF
    Tissue vascularization and integration with host circulation remains a key barrier to the translation of engineered tissues into clinically relevant therapies. Here, we used a microtissue molding approach to demonstrate that constructs containing highly aligned “cords” of endothelial cells triggered the formation of new capillaries along the length of the patterned cords. These vessels became perfused with host blood as early as 3 d post implantation and became progressively more mature through 28 d. Immunohistochemical analysis showed that the neovessels were composed of human and mouse endothelial cells and exhibited a mature phenotype, as indicated by the presence of alpha-smooth muscle actin–positive pericytes. Implantation of cords with a prescribed geometry demonstrated that they provided a template that defined the neovascular architecture in vivo. To explore the utility of this geometric control, we implanted primary rat and human hepatocyte constructs containing randomly organized endothelial networks vs. ordered cords. We found substantially enhanced hepatic survival and function in the constructs containing ordered cords following transplantation in mice. These findings demonstrate the importance of multicellular architecture in tissue integration and function, and our approach provides a unique strategy to engineer vascular architecture.National Institutes of Health (U.S.) (Grant EB08396)National Institutes of Health (U.S.) (Grant EB00262)National Institutes of Health (U.S.) (National Research Service Award 1F32DK091007

    Delivering transformative action in paediatric pain: a <i>Lancet Child &amp; Adolescent Health</i> Commission

    Get PDF
    Every infant, child, and adolescent will experience pain at times throughout their life. Childhood pain ranges from acute to chronic, and includes procedural, disease-related, breakthrough, and other types of pain. Despite its ubiquity, pain is a major challenge for individuals, families, health-care professionals, and societies. As a private mental experience, pain is often hidden and can go undiscussed or ignored. Undertreated, unrecognised, or poorly managed pain in childhood leads to important and long-lasting negative consequences that continue into adulthood, including continued chronic pain, disability, and distress. This undertreatment of pain should not continue, as there are available tools, expertise, and evidence to provide better treatment for childhood pain
    corecore