70 research outputs found

    Luncheon

    Get PDF
    Topic: Results of Mars Pathfinder Missio

    NEWS: the near-infrared Echelle for wideband spectroscopy

    Full text link
    We present an updated optical and mechanical design of NEWS: the Near-infrared Echelle for Wide-band Spectroscopy (formerly called HiJaK: the High-resolution J, H and K spectrometer), a compact, high-resolution, near-infrared spectrometer for 5-meter class telescopes. NEWS provides a spectral resolution of 60,000 and covers the full 0.8-2.5 micron range in 5 modes. We adopt a compact, lightweight, monolithic design and developed NEWS to be mounted to the instrument cube at the Cassegrain focus of the the new 4.3-meter Discovery Channel Telescope.Comment: Proc. SPIE 9908, Ground-based and Airborne Instrumentation for Astronomy VI, 99086M (August 9, 2016

    Magnetic inflation and stellar mass. III. revised parameters for the component stars of NSVS 07394765

    Full text link
    We perform a new analysis of the M-dwarf–M-dwarf eclipsing binary system NSVS 07394765 in order to investigate the reported hyper-inflated radius of one of the component stars. Our analysis is based on archival photometry from the Wide Angle Search for Planets, new photometry from the 32 cm Command Module Observatory telescope in Arizona and the 70 cm telescope at Thacher Observatory in California, and new high-resolution infrared spectra obtained with the Immersion Grating Infrared Spectrograph on the Discovery Channel Telescope. The masses and radii we measure for each component star disagree with previously reported measurements. We show that both stars are early M-type main-sequence stars without evidence for youth or hyper-inflation ( = - ☉ M M + 1 0.661 0.036 0.008 , = - ☉ M M + 2 0.608 0.028 0.003 , = - ☉ + R1 0.599 0.019 R 0.032 , = - ☉ + R2 0.625 0.027 R 0.012 ), and we update the orbital period and eclipse ephemerides for the system. We suggest that the likely cause of the initial hyper-inflated result is the use of moderate-resolution spectroscopy for precise radial velocity measurements.Published versio

    Mars Pathfinder Flight System Design and Implementation

    Get PDF
    This paper describes the system architecture and implementation approach for the Mars Pathfinder spacecraft scheduled to land on the surface of Mars in July, 1997. Mars Pathfinder (MPF) is one of the new series of small challenging missions doing significant science/engineering on a very fast schedule and limited budget. Along with Clementine and the Near Earth Asteroid Flyby (NEAR), Mars Pathfinder is pushing the frontiers of planetary missions. This paper details the system architecture, configuration, descriptions of all the subsystems, and status of the development effort. The implementation approach is discussed including new ways of doing business, fault tolerant design strategy and test approach. The uniquely challenging part of the MPF mission is the entry, descent, landing and operation on the surface of Mars. The entry, descent and landing system, including the aero shell, parachute, rocket assisted deceleration and airbag elements are discussed. The design drivers for this implementation of a surface landing mission are discussed

    Planetary rover technology development requirements

    Get PDF
    Planetary surface (including lunar) mobility and sampling capability is required to support proposed future National Aeronautics and Space Administration (NASA) solar system exploration missions. The NASA Office of Aeronautics and Space Technology (OAST) is addressing some of these technology needs in its base research and development program, the Civil Space Technology Initiative (CSTI) and a new technology initiative entitled Pathfinder. The Pathfinder Planetary Rover (PPR) and Sample Acquisition, Analysis and Preservation (SAAP) programs will develop and validate the technologies needed to enable both robotic and piloted rovers on various planetary surfaces. The technology requirements for a planetary roving vehicle and the development plans of the PPR and SAAP programs are discussed

    NESC Independent Review of the Mars Reconnaissance Orbiter (MRO) Contamination Thermal/Vacuum (T/V) Anomaly Technical Consultation Report

    Get PDF
    The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings

    Increased Depth of Cellular Imaging in the Intact Lung Using Far-Red and Near-Infrared Fluorescent Probes

    Get PDF
    Scattering of shorter-wavelength visible light limits the fluorescence imaging depth of thick specimens such as whole organs. In this study, we report the use of four newly synthesized near-infrared and far-red fluorescence probes (excitation/emission, in nm: 644/670; 683/707; 786/814; 824/834) to image tumor cells in the subpleural vasculature of the intact rat lungs. Transpelural imaging of tumor cells labeled with long-wavelength probes and expressing green fluorescent protein (GFP; excitation/emission 488/507 nm) was done in the intact rat lung after perfusate administration or intravenous injection. Our results show that the average optimum imaging depth for the long-wavelength probes is higher (27.8 ± 0.7  μm) than for GFP (20 ± 0.5  μm; p = 0.008; n = 50), corresponding to a 40% increase in the volume of tissue accessible for high-resolution imaging. The maximum depth of cell visualization was significantly improved with the novel dyes (36.4 ± 1  μm from the pleural surface) compared with GFP (30.1 ± 0.5  μm; p = 0.01; n = 50). Stable binding of the long-wavelength vital dyes to the plasma membrane also permitted in vivo tracking of injected tumor cells in the pulmonary vasculature. These probes offer a significant improvement in the imaging quality of in situ biological processes in the deeper regions of intact lungs

    Long-term, multiwavelength light curves of ultra-cool dwarfs: I. An interplay of starspots & clouds likely drive the variability of the L3. 5 dwarf 2MASS 0036+ 18

    Full text link
    We present multi-telescope, ground-based, multiwavelength optical and near-infrared photometry of the variable L3.5 ultra-cool dwarf 2MASSW J0036159+182110. We present 22 nights of photometry of 2MASSW J0036159+182110, including 7 nights of simultaneous, multiwavelength photometry, spread over ∼120 days allowing us to determine the rotation period of this ultra-cool dwarf to be 3.080 ± 0.001 hr. Our many nights of multiwavelength photometry allow us to observe the evolution, or more specifically the lack thereof, of the light curve over a great many rotation periods. The lack of discernible phase shifts in our multiwavelength photometry, and that the amplitude of variability generally decreases as one moves to longer wavelengths for 2MASSW J0036159+182110, is generally consistent with starspots driving the variability on this ultra-cool dwarf, with starspots that are ∼100 degrees K hotter or cooler than the ∼1700 K photosphere. Also, reasonably thick clouds are required to fit the spectra of 2MASSW J0036159+182110, suggesting there likely exists some complex interplay between the starspots driving the variability of this ultra-cool dwarf and the clouds that appear to envelope this ultra-cool dwarf.https://arxiv.org/pdf/1609.03586.pdfFirst author draf

    Independent Review Support for Phoenix Mars Mission Robotic Arm Brush Motor Failure

    Get PDF
    The Phoenix Project requested the NASA Engineering and Safety Center (NESC) perform an independent peer review of the Robotic Arm (RA) Direct Current (DC) motor brush anomalies that originated during the Mars Exploration Rover (MER) Project and recurred during the Phoenix Project. The request was to evaluate the Phoenix Project investigation efforts and provide an independent risk assessment. This includes a recommendation for additional work and assessment of the flight worthiness of the RA DC motors. Based on the investigation and findings contained within this report, the IRT concurs with the risk assessment Failure Cause / Corrective Action (FC/CA) by the project, "Failure Effect Rating "3"; Major Degradation or Total Loss of Function, Failure Cause/Corrective Action Rating Currently "4"; Unknown Cause, Uncertainty in Corrective Action.

    Miniature exoplanet radial velocity array I: design, commissioning, and early photometric results

    Get PDF
    The MINiature Exoplanet Radial Velocity Array (MINERVA) is a US-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7 m telescopes outfitted for both high-resolution spec- troscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. In this article, we describe the design of MINERVA including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, CA, and their on-sky performance is validated. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b—a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence within 2015
    corecore