654 research outputs found

    The infrared imaging spectrograph (IRIS) for TMT: spectrograph design

    Get PDF
    The Infra-Red Imaging Spectrograph (IRIS) is one of the three first light instruments for the Thirty Meter Telescope (TMT) and is the only one to directly sample the diffraction limit. The instrument consists of a parallel imager and off-axis Integral Field Spectrograph (IFS) for optimum use of the near infrared (0.84um-2.4um) Adaptive Optics corrected focal surface. We present an overview of the IRIS spectrograph that is designed to probe a range of scientific targets from the dynamics and morphology of high-z galaxies to studying the atmospheres and surfaces of solar system objects, the latter requiring a narrow field and high Strehl performance. The IRIS spectrograph is a hybrid system consisting of two state of the art IFS technologies providing four plate scales (4mas, 9mas, 25mas, 50mas spaxel sizes). We present the design of the unique hybrid system that combines the power of a lenslet spectrograph and image slicer spectrograph in a configuration where major hardware is shared. The result is a powerful yet economical solution to what would otherwise require two separate 30m-class instruments.Comment: 15 pages, 11 figure

    4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection.

    Get PDF
    BackgroundChagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice.Methodology/principal findingsBoth acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart.Conclusions/significanceThe positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life

    Properties of the Strange Axial Mesons in the Relativized Quark Model

    Get PDF
    We studied properties of the strange axial mesons in the relativized quark model. We calculated the K1K_1 decay constant in the quark model and showed how it can be used to extract the K1(3P1)−K1(1P1)K_1 (^3P_1) - K_1 (^1P_1) mixing angle (θK\theta_K) from the weak decay τ→K1ντ\tau \to K_1 \nu_\tau. The ratio BR(τ→ντK1(1270))/BR(τ→ντK1(1400))BR(\tau \to \nu_\tau K_1 (1270))/BR(\tau\to \nu_\tau K_1(1400)) is the most sensitive measurement and also the most reliable since the largest of the theoretical uncertainties factor out. However the current bounds extracted from the TPC/Two-Gamma collaboration measurements are rather weak: we typically obtain −30o≲θK≲50o-30^o \lesssim \theta_K \lesssim 50^o at 68\% C.L. We also calculated the strong OZI-allowed decays in the pseudoscalar emission model and the flux-tube breaking model and extracted a 3P1−1P1^3P_1 - ^1P_1 mixing angle of θK≃45o\theta_K \simeq 45^o. Our analysis also indicates that the heavy quark limit does not give a good description of the strange mesons.Comment: Revised version to be published in Phys. Rev. D. Minor changes. Latex file uses revtex version 3 and epsfig, 4 postcript figures are attached. The full postcript version with embedded figures is available at ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9512.ps.

    Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud

    Full text link
    The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial 7Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis. The lithium abundance of low-metallicity gas provides an alternative constraint on the primordial abundance and cosmic evolution of lithium that is not susceptible to the in situ modifications that may affect stellar atmospheres. Here we report observations of interstellar 7Li in the low-metallicity gas of the Small Magellanic Cloud, a nearby galaxy with a quarter the Sun's metallicity. The present-day 7Li abundance of the Small Magellanic Cloud is nearly equal to the BBN predictions, severely constraining the amount of possible subsequent enrichment of the gas by stellar and cosmic-ray nucleosynthesis. Our measurements can be reconciled with standard BBN with an extremely fine-tuned depletion of stellar Li with metallicity. They are also consistent with non-standard BBN.Comment: Published in Nature. Includes main text and Supplementary Information. Replaced with final title and abstrac

    The Infrared Imaging Spectrograph (IRIS) for TMT: Instrument Overview

    Full text link
    We present an overview of the design of IRIS, an infrared (0.84 - 2.4 micron) integral field spectrograph and imaging camera for the Thirty Meter Telescope (TMT). With extremely low wavefront error (<30 nm) and on-board wavefront sensors, IRIS will take advantage of the high angular resolution of the narrow field infrared adaptive optics system (NFIRAOS) to dissect the sky at the diffraction limit of the 30-meter aperture. With a primary spectral resolution of 4000 and spatial sampling starting at 4 milliarcseconds, the instrument will create an unparalleled ability to explore high redshift galaxies, the Galactic center, star forming regions and virtually any astrophysical object. This paper summarizes the entire design and basic capabilities. Among the design innovations is the combination of lenslet and slicer integral field units, new 4Kx4k detectors, extremely precise atmospheric dispersion correction, infrared wavefront sensors, and a very large vacuum cryogenic system.Comment: Proceedings of the SPIE, 9147-76 (2014

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s−1^{-1} and an ejecta mass of few ×10−5\times 10^{-5} M⊙_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure
    • …
    corecore